Lafitte-Houssat E.1,2, Ferrier A.1,3, Afzelius M. 4, Berger P.2, Morvan L.2, Welinski S.2, Goldner P.1
1Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
2Thales Research and Technology, 1 Avenue Augustin Fresnel, Palaiseau, France
3Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
4Departement de Physique Appliquee, Universite de Geneve, Geneve, Switzerland
Email: philippe.goldner@chimieparistech.psl.eu
Rare earth ions are actively investigated as optically addressable spin systems for quantum technologies thanks to their long optical and spin coherence lifetimes. 171Yb3+, which has 1/2 electron and nuclear spins, recently raised interest for its simple hyperfine structure that moreover can result in long coherence lifetimes at zero magnetic field, an unusual property for paramagnetic rare earth ions. Here, we report on the optical inhomogeneous and homogeneous linewidths in 171Yb3+ : Y2SiO5 (site 2) for different doping concentrations. While inhomogeneous linewidth is not correlated to 171Yb3+ concentration, the homogeneous one strongly decreases between 10 and 2 ppm doping level, reaching 255 Hz at 3 K. This is attributed to a slowing down of 171Yb3+ ground state spin flip-flops. Keywords: rare earth, quantum technologies, crystals, high-resolution spectroscopy.
- P. Goldner, A. Ferrier, and O.Guillot-Noel. Handbook Phys. Chem. Rare Earths, ed. by J.-C.G. Bunzli and V.K. Pecharsky (Elsevier, Amsterdam, 2015), V. 46, p. 1-78
- D.D. Awschalom, R. Hanson, J. Wrachtrup, and B.B. Zhou. Nat. Photonics., 12, 516 (2018). DOI: 10.1038/s41566-018-0232-2
- T. Zhong and P. Goldner. Nanophotonics, 8, 2003 (2019). DOI: 10.1515/nanoph-2019-0185
- A. Ortu, A. Tiranov, S. Welinski, F. Frowis, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius. Nat. Mater., 17, 671 (2018). DOI: 10.1038/s41563-018-0138-x
- M. Businger, A. Tiranov, K.T. Kaczmarek, S. Welinski, Z. Zhang, A. Ferrier, P. Goldner, and M. Afzelius. Phys. Rev. Lett., 124, 053606 (2020). DOI: 10.1103/PhysRevLett.124.053606
- J.M. Kindem, A. Ruskuc, J.G. Bartholomew., J. Rochman, Y.Q. Huan, and A. Faraon. Nature, 580, 201 (2020). DOI: 10.1038/s41586-020-2160-9
- J.G. Bartholomew, J. Rochman, T. Xie, J.M. Kindem, A. Ruskuc, I. Craiciu, M. Lei, and A. Faraon. Nat. Commun., 11, 3266 (2020). DOI: 10.1038/s41467-020-16996-x
- T. Bottger, C.W. Thiel, R.L. Cone, Y. Sun, and A. Faraon. Phys. Rev. B, 4, 045134 (2016). DOI: 10.1103/PhysRevB.94.045134
- S. Welinski, A. Tiranov, M. Businger, A. Ferrier, M. Afzelius, and P. Goldner. Phys. Rev. X, 10, 031060 (2020). DOI: 10.1103/PhysRevX.10.031060
- N. Agladze, M.N. Popova, G. Zhizhin, V. Egorov, and M. Petrova. Phys. Rev. Lett., 66, 477 (1991). DOI: 10.1103/PhysRevLett.66.477
- E.P. Chukalina and M.N. Popova. Phys. Lett. A, 262, 191 (1999). DOI: 10.1016/S0375-9601(99)00687-8
- M.N. Popova, E.P. Chukalina, B. Malkin, and S.K. Saikin. Phys. Rev. B, 61, 7421 (2000). DOI: 10.1103/PhysRevB.61.7421
- K.N. Boldyrev, M.N. Popova, B. Malkin, and N.M. Abishev. Phys. Rev. B, 99, 041105 (2019). DOI: 10.1103/PhysRevB.99.041105
- A. Tiranov, A. Ortu, S. Welinski, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius. Phys. Rev. B, 98, 195110 (2018). DOI: 10.1103/PhysRevB.98.195110
- R.D. Shannon and C.T. Prewitt. Acta Crystallogr. B, 25, 925 (1969). DOI: 10.1107/S0567740869003220
- D.E. McCumber and M.D. Sturge. J. Appl. Phys. 34, 1682 (1963). DOI: 10.1063/1.1702657
- F. Konz, Y. Sun, C.W. Thiel, R.L. Cone, R. Equall, R. Hutcheson., and R.M. Macfarlane. Phys. Rev. B, 68, 085109 (2003). DOI: 10.1103/PhysRevB.68.085109
- T. Bottger, C.W. Thiel, Y. Sun, and R.L. Cone. Phys. Rev. B, 73, 075101(2006). DOI: 10.1103/PhysRevB.73.075101
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.