Comparison of Thin Films of Titanium Dioxide Deposited by Sputtering and Sol-Gel Methods for Waveguiding Applications
Brella M.1, Taabouche A.2,3, Gharbi B.1,3, Gheriani R.1, Bouachiba Y.4, Bouabellou A.2, Serrar H.5, Touil S.4, Laggoune K.5, Boudissa M.6
1Laboratoire de Rayonnement et Plasmas et Physique des Surfaces (LRPPS), Universite Kasdi Merbah, Ouargla, Algeria
2Thin Films and Interfaces Laboratory, University of Fréres Mentouri Constantine, Constantine, Algeria
3Faculty of Hydrocarbons and Renewable Energies and Earth and Universe Sciences, University Kasdi Merbah, Ouargla, Algeria
4Mechanics and advanced materials laboratory, National Polytechnic School of Constantine Malek BENNABI, Constantine, Algeria
5Research Center in Industrial Technologies (CRTI), BP 64, Cheraga (Alger), Algeria
6ENMC Laboratory, Department of Physics, Faculty of Sciences, University Ferhat Abbas, Setif, Algeria
Email: Adelphm@gmail.com

PDF
In this work, TiO2 thin films were deposited onto glass substrate by two different techniques: sol-gel dip-coating (SG) and reactive DC magnetron sputtering (Sput). The prepared samples have been characterized by means of micro-Raman, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) measurements, scanning electron microscopy (SEM), UV-Visible spectrophotometry, and M-Lines spectroscopy (MLS). The micro-Raman results showed an amorphous TiO2-SG phase and the vibrational mode of TiO2-Sput is anatase phase. DSC-TGA analysis was used to investigate the thermal properties of the TiO2 material. SEM spectroscopy has shown that TiO2-SG has a disordered and more porous surface, TiO2-Sput sample is homogeneous and shows uniform distribution of densely packed well-defined grains. The obtained films have an optical transmittance varying from 60 to 88% in the visible region. The optical band gaps deduced from the transmittance are 3.48 and 3.53 eV for TiO2-SG and TiO2-Sput, respectively. The optical waveguiding measurements carried out on TiO2-SG and TiO2-Sput films show single guided modes behavior (TE0 and TM0). These measurements have allowed deducing the refractive index and thickness values that are 2.06 at 216 nm for TiO2-SG and 2.26 at 204 nm for TiO2-Sput thin films. The analysis of waveguiding properties indicates that amorphous TiO2 may prove to be more efficient in photonic device as compared to crystalline TiO2. Keywords: TiO2, thin films, sol-gel, sputtering, anatase, waveguiding.
  1. F. Medjaldi, A. Bouabellou, Y. Bouachiba, A. Taabouche, K. Bouatia, and H. Serrar, Mater. Res. Express 7, 016439 (2020)
  2. H.E. Doghmane, T. Touam, A. Chelouche, F. Challali, and B. Bordji, Semiconductors 54, 268 (2020)
  3. D.A.H. Hanaor and C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)
  4. K. Zakrzewska and M. Radecka, Nanoscale Res. Lett. 12, 89 (2017)
  5. A. Ranjitha, M. Thambidurai, S. Foo, N. Muthukumarasamy, and D. Velauthapillai, Mater. Sci. Energy Technol. 2, 385 (2019)
  6. M.N. Islam and J. Podder. Mater. Sci. Semicond. Process. 121, 105419 (2021)
  7. Y. Zhang, Z. Zhou, and H. Li. Appl. Phys. Lett. 68, 634 (1996)
  8. S.M.H. Qaid, M. Hussain, M. Hezam, M.A.M. Khan, H. Albrithen, H.M. Ghaithan, and A.S. Aldwayyan, Mater. Chem. Phys. 225, 55 (2019)
  9. L.C Sun and P. Hou, Thin Solid Films 455-456, 525 (2004)
  10. I. Dundar, M. Krichevskaya, A. Katerski, and I.O. Acik, R. Soc. Open Sci. 6, 181578 (2019)
  11. N. Cicek Bezir, A. Evcin, R. Kayali, M.K. Ozen, and G. Balyaci, Acta Phys. Polon. A 132, 620 (2017)
  12. Y. Liang, S. Sun, T. Deng, H. Ding, W. Chen, and Y. Chen, Mater. 11, 450 (2018)
  13. M.R. Alfaro Cruz, D. Sanchez-Martinez, and L.M. Torres-Martinez, Int. J. Hydrogen Energy 44, 20017 (2019)
  14. R. Hazem, M. Izerrouken, A. Cheraitia, and A. Djehlane, Nucl. Instrum. Methods Phys. Res., Sect. B 444,
  15. D. Komaraiah, E. Radha, J. James, N. Kalarikkal, J. Sivakumar, M.V. Ramana Reddy, and R. Sayanna, J. Lumin. 211, 320 (2019)
  16. R. Taziwa, E. Meyer, and N. Takata, J. Nanosci. Nanotechnol. Res. 1, 1 (2017)
  17. U. Balachandran and N.G. Eror, J. Solid State Chem. 42, 276 (1982)
  18. S.K. Gautam, F. Singh, I. Sulania, R.G. Singh, P.K. Kulriya, and E. Pippel, J. Appl. Phys. 115, 143504 (2014)
  19. F.D. Hardcastle, J. Arkansas Acad. Sci. 65, 43 (2011)
  20. A. Sharma, R.K. Karn, and S.K. Pandiyan, J. Basic Appl. Eng. Res. 1 (9), 1 (2014)
  21. J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974)
  22. A.S. Hassanien and A.A. Akl, Phys. B (Amsterdam, Neth.) 576, 411718 (2020)
  23. A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, C. Sedrati, Y. Bouachiba, and C. Benazzouz, Ceram. Int. 42, 6701 (2016)
  24. M. Dehimi, T. Touam, A. Chelouche, F. Boudjouan, D. Djouadi, J. Solard, A. Fischer, A. Boudrioua, and A. Doghmane, Adv. Condens. Matter Phys. 2015, 1 (2015)
  25. E. Yoldas and P.W. Partlow, Thin Solid Films 129, 1 (1985)
  26. F. Gracia, F. Yubero, J.P. Holgado, J.P. Espinos, A.R. Gonzalez-Elipe, and T. Girardeau, Thin Solid Films 500, 19 (2006)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru