Spectral optical properties of ceramic nanoporous membranes based on anodic aluminium oxide coated silver in ammonia vapors
Vasilkov M.Y.
1,2, Mikhailov I. N.
1,3, Nikulin Y.V.
1, Volchkov S.S.
2, Zimnyakov D.A.
2, Ushakov N.M.
1,41Saratov Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
2Yuri Gagarin State Technical University of Saratov, Saratov, Russia
3Yuri Gagarin State Technical University of Saratov, Saratov, Russia
4Saratov State University, Institute of Physics, Saratov, Russia
Email: vasilk.mikhail@yandex.ru, ilya98mih@yandex.ru, nmu@bk.ru
Spectral optical properties of synthesized ceramic nanoporous membranes based on anodic aluminum oxide coated silver in saturated ammonia gas flow have been experimentally investigated. Based on the measured transmission spectra and detected interference part of the spectra in wavelength range from 550 to 900 nm, temporal and spectral dependencies of the effective optical thickness and its changes in non-equilibrium conditions were obtained due to adsorption of ammonia molecules on silver film surface. According to detected and measured interference maximum shifts up to 14 nm in transmission spectra of Al2O3 + Ag membranes in ammonia gas flow, the possibility of constructing a selective interferometric optical sensors with 10-15 min response time is shown. Keywords: porous anodic aluminium oxide, membrane, silver film, light interference, ammonia vapors, effective optical thickness, interference maximum shift.
- T. Kumeria, A. Santos, D. Losic. Sens., 14 (7), 11878 (2014). DOI: 10.3390/s140711878
- A. Yamaguchi, K. Hotta, N. Teramae. Anal. Chem., 81 (1), 105 (2009). DOI: 10.1021/ac8015642
- A.G. Koutsioubas, N. Spiliopoulos, D. Anastassopoulos, A.A. Vradis, G.D. Priftis. J. Appl. Phys., 103, 094521 (2008). DOI: 10.1063/1.2924436
- V.S.Y. Lin, K. Motesharei, K.P.S. Dancil, M.J. Sailor, M.R. Ghadiri. Science, 278 (5339), 840 (1997). DOI: 10.1126/science.278.5339.840
- C. Pacholski, L.A. Perelman, M.S. VanNieuwenhze, M.J. Sailor. Phys. Stat. Sol. A, 206 (6), 1318 (2009). DOI: 10.1002/pssa.200881072
- F. Casanova, C.E. Chiang, A.M. Ruminski, M.J. Sailor, I.K. Schuller. Langmuir, 28 (17), 832 (2012). DOI: 10.1021/la204933m
- S. Pan, L.J. Rothberg. Nano Lett., 3 (6), 811 (2003). DOI: 10.1021/nl034055l
- S.D. Alvarez, C.-P. Li, C.E. Chiang, I.K. Schuller, M.J. Sailor. ACS Nano, 3 (10), 3301 (2003). DOI: 10.1021/nn900825q
- T. Kumeria, D. Losic. Phys. Stat. Sol. Rapid Res. Lett., 5 (10-11), 406 (2011). DOI: 10.1002/pssr.201105425
- S. Kaur, C.S. Law, N.H. Williamson, I.M. Kempson, A. Popat, T. Kumeria, A. Santos. Anal. Chem., 91 (8), 5011 (2019). DOI: 10.1021/acs.analchem.8b04963
- F. Casanova, C.E. Chiang, C.-P. Li, I.V. Roshchin, A.M. Ruminski, M.J. Sailor, I.K. Schuller. Nanotech., 19 (31), 315709 (2008). DOI: 10.1088/0957-4484/19/31/315709/
- A. Pistone, A. Piperno, D. Iannazzo. Sens. Actuators B, 186, 333 (2013). DOI: 10.1016/j.snb.2013.06.027
- H.O. Ali. Transact. IMF, 95 (6), 290 (2017). DOI: 10.1080/00202967.2017.1358514
- T. Kumeria, A. Santos. Electrochemically Engineered Nanoporous Materials (Springer, Cham, 2015). p. 187-218. DOI: 10.1007/978-3-319-20346-1_7
- M. Nemati, A. Santos, T. Kumeria, D. Losic. Anal. Chem., 87 (17), 9016 (2015). DOI: 10.1021/acs.analchem.5b02225
- A.Yu. Olenin. Zhurnal neorg. khimii, 65 (4), 542 (2020) (in Russian). DOI: 10.31857/S0044457X20040157
- B. Wu, X. Zhang, B. Huang, Y. Zhao, C. Cheng, H. Chen. Sens., 17 (9), 2070 (2017). DOI: 10.3390/s17092070
- D. Kwak, Y. Lei, R. Maric. Talanta, 204, 713 (2019). DOI: 10.1016/j.talanta.2019.06.034
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.