Physics of the Solid State
Volumes and Issues
Luminescent properties of colloidal Ag2S quantum dots for photocatalytic applications
Ovchinnikov O.V.1, Smirnov M.S.1, Aslanov S.V.1, Perepelitsa A.S.1
1Voronezh State University, Voronezh, Russia
Email: ovchinnikov_o_v@rambler.ru, smirnov_m_s@mail.ru, Windmaster7@yandex.ru, a-perepelitsa@yandex.ru

PDF
The structural and optical properties of colloidal Ag2S quantum dots in various environments are investigated. With the help of transmission electron microscopy, X-ray diffraction and energy-dispersive X-ray analysis the formation of colloidal Ag2S quantum dots with an average size of 2-3 nm with a monoclinic crystal lattice, and Ag2S/SiO2 core-shell systems based on them, has been established. The change in the luminescence quantum yield of quantum dots with the change of the surface environment state is shown. The decoration of TiO2 nanoparticles of 10-15 nm in size with Ag2S quantum dots was performed and the influence of the structure of the interfaces of quantum dots and their environment (2-mercaptopropionic acid, water, ethylene glycol, SiO2 dielectric shell with a thickness of 0.6 nm and 2.0 nm) on the formation of TiO2-Ag2S heterosystems was analyzed. For Ag2S quantum dots passivated with 2-mercaptopropionic acid, signs of charge phototransfer after adsorption on TiO2 nanoparticles surface have been established. Signs of reactive oxygen species appearance due to charge phototransfer in heterosystem are enstablished, based on methylene blue photobleaching under excitation of heterosystem outside of TiO2 fundamental absorption region, Keywords: Quantum dots, photocatalysis, luminescence, titanium dioxide, silver sulfide.
  1. H.L. Chou, B.-J. Hwang, C.-L. Sun. New and Future Developments in Catalysis. Elsevier (2013) P. 217. doi 10.1016/B978-0-444-53880-2.00014-4
  2. J.J. Ng, K.H. Leong, L.C. Sim, W.-D. Oh, C. Dai, P. Saravanan. Nanomaterials for Air Remediation. Elsevier (2020) P. 193. doi 10.1016/B978-0-12-818821-7.00010-5
  3. M. Sakar, R.M. Prakash, K. Shinde, G.R. Balakrishna. Int. J. Hydrogen Energy. 45, 13, 7691 (2020). doi 10.1016/j.ijhydene.2019.04.222
  4. A. Kubackaa, U. Caudillo-Flores, I. Barba-Nieto, M. Fernandez-Garci a. Appl. Catal. A 610, 25, 117966 (2021). doi 10.1016/j.apcata.2020.117966
  5. S. Shen, C. Kronawitter, G. Kiriakidis. J. Materiomics 3, 1, 1 (2017). doi 10.1016/j.jmat.2016.12.004
  6. M. Pawar, S.T. Sendogdular, P. Gouma. J. Nanomaterials 2018, 5953609 (2018). doi 10.1155/2018/5953609
  7. A.L. Linsebigler, G. Lund, J.T. Yates Jr. Chem. Rev. 95, 3, 735 (1995). doi 10.1021/cr00035a013
  8. K. Nakata, A. Fujishima. J. Photochem. Photobiol. C 13, 3, 169 (2012). doi 10.1016/j.jphotochemrev.2012.06.001
  9. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann. Chem. Rev. 114, 19, 9919 (2014). doi 10.1021/cr5001892
  10. Z. Bao, S. Wang, X. Yu, Y. Gao, Z. Wen. Water Air Soil Pollut. 230, 169 (2019). doi 10.1007/s11270-019-4219-5
  11. O.R. Fonseca-Cervantes, A. Perez-Larios, V.H. Romero Arellano, B. Sulbaran-Rangel, C.A. Guzman Gonzalez. Processes 8, 9, 1032. (2020). doi 10.3390/pr8091032
  12. M. Janczarek, E. Kowalska. Catalysts 7, 11, 317 (2017). doi 10.3390/catal7110317
  13. S.B. Rawal, S. Bera, D. Lee, D.-J. Jang, W. In Lee. Catal. Sci. Technol., 3, 1822 (2013). doi 10.1039/C3CY00004D
  14. C. Del Cacho, O. Geiss, P. Leva, S. Tirendi, J. Barrero-Moreno. Nanotechnology in Eco-Efficient Construction. Woodhead Publishing (2013) P. 343. doi 10.1533/9780857098832.3.343
  15. I. Zumeta-Dube, V.-F. Ruiz-Ruiz, D. Diaz, S. Rodil-Posadas, A. Zeinert. Phys. Chem. C, 118, 22, 11495 (2014). doi 10.1021/jp411516a
  16. A. Badawi. Physica E 109, 107 (2019). doi 10.1016/j.physe.2019.01.018
  17. R. Gui, H. Jin, Z. Wang, L. Tan, Coord. Chem. Rev. 296, 15, 91 (2015). doi 10.1016/j.ccr.2015.03.023
  18. R. Gui, A. Wan, X. Liu, W. Yuan, H. Jin. Nanoscale 6, 10, 5467 (2014). doi 10.1039/C4NR00282B
  19. R. Gui, J. Sun, D. Liu, Y. Wang, H. Jin. Dalton Trans. 43, 44, 16690 (2014). doi 10.1039/C4DT00699B
  20. R. Tang, J. Xue, B. Xu, D. Shen, G.P. Sudlow, S. Achilefu. ACS Nano 9, 1, 220 (2015). doi 10.1021/nn5071183
  21. Y. Xie, S.H. Yoo, C. Chen, S. Oh. Mater. Sci. Eng. B 177, 1, 106. (2012). doi 10.1016/j.mseb.2011.09.021
  22. B. Liu, D. Wang, Y. Zhang, H. Fan, Y. Lin, T. Jiang, T. Xie. Dalton Trans. 42, 2232 (2014). doi 10.1039/C2DT32031B
  23. K. Nagasuna, T. Akita, M. Fujishima, H. Tada. Langmuir. 27, 11, 7294 (2011). doi 10.1021/la200587s
  24. M. Smirnov, O. Ovchinnikov. J. Lumin. 227, 117526 (2020). doi 10.1016/j.jlumin.2020.117526
  25. O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko, A.S. Perepelitsa, S.V. Aslanov, V.U. Khokhlov, E.P. Tatyanina, A.S. Matsukovich. Opt. Quantum Electron. 52, 4, 198 (2020). doi 10.1007/s11082-020-02314-8
  26. O.V. Ovchinnikov, M.S. Smirnov, B.I. Shapiro, T.S. Shatskikh, A.S. Perepelitsa, N.V. Korolev. Semiconductors 49, 3, 373 (2015). https://doi.org/10.1134/S1063782615030173
  27. C.M. Wilke, C. Petersen, M.A. Alsina, J.-F. Gaillard, K.A. Gray. Environ. Sci.: Nano, 6, 115 (2019). doi 10.1039/C8EN01159A
  28. X. Liu, L. Zhu, X. Wang, X. Meng. Env. Sci. Pollution Res., 27, 13590 (2020). doi 10.1007/s11356-020-07960-9
  29. T.S. Kondratenko, M.S. Smirnov, O.V. Ovchinnikov, A.I. Zvyagin, T.A. Chevychelova, I.V. Taydakov.Bull. Lebedev Phys. Inst. 46, 210 (2019). doi /10.3103/S106833561906006X
  30. O.V. Ovchinnikov, S.V. Aslanov, M.S. Smirnov, A.S. Perepelitsa, T.S. Kondratenko, A.S. Selyukov, I.G. Grevtseva. Opt. Mater. Express 11, 1, 89 (2021). doi 10.1364/OME.411432
  31. O.V. Ovchinnikov, S.V. Aslanov, M.S. Smirnov, I.G. Grevtseva, A.S. Perepelitsa. RSC Adv. 9, 37312 (2019). doi 10.1039/C9RA07047H
  32. J.R. Lakowicz. Principles of Fluorescence Spectroscopy. Springer, N.Y. (2006). doi 10.1007/978-0-387-46312-4
  33. S. Reindl, A. Penzkofer, S.-H. Gong, M. Landthaler, R.M. Szeimies, C. Abels, W. Baumler. J. Photochem. Photobiol. A 105, 65 (1997). doi 10.1016/S1010-6030(96)04584-4
  34. A.J. Frueh. Z. Kristallogr. 110, 136 (1958)
  35. H.F. Poulsen, J. Neuefeind, H.-B. Neumann, J.R. Schneider. J. Non-Crystalline Solids 188, 1, 74 (1995). doi 10.1016/0022-3093(95)00095-X
  36. S. Music, N. Filipovic-Vincekovic, L. Sekovanic. Braz. J. Chem. Eng. 28, 1, 89 (2011). doi 10.1590/S0104-66322011000100011
  37. H. Ijadpanah-Saravy, M. Safari, A. Khodadadi-Darban, A. Rezaei. Anal.Lett. 47, 10, 1772 (2014). doi: 10.1080/00032719.2014.880170
  38. S. Lin, Y. Feng, X. Wen, P. Zhang, S. Woo, S. Shrestha, G. Conibeer, S. Huang. J. Phys. Chem. 119, 867 (2015). doi 10.1021/jp511054g
  39. Y. Kayanuma. Phys. Rev. B: Condens. Matter Mater. Phys. 38, 9797 (1988). doi 10.1103/PhysRevB.38.9797
  40. A.B. Murphy. Solar Energy Mater. Solar Cells 91, 14, 1326 (2007). doi 10.1016/j.solmat.2007.05.005
  41. V.M. Ievlev, S.B. Kushchev, A.N. Latyshev, L.Yu. Leonova, O.V. Ovchinnikov, M.S. Smirnov, E.V. Popova, A.V. Kostyuchenko, S.A. Soldatenko. FTP (in Russian) 48, 7, 875 (2014)
  42. A.S. Perepelitsa, O.V. Ovchinnikov, M.S. Smirnov, T.S. Kondratenko, I.G. Grevtseva, S.V. Aslanov, V.Y. Khokhlov. J. Luminescence 231, 117805 (2021). doi 10.1016/j.jlumin.2020.117805
  43. A. Mills, J. Wang. J. Photochem. Photobiol. A 124, 1, 123 (1999) doi 10.1016/S1010-6030(99)00143-4
  44. S. Otsuka-Yao-Matsuo, T. Omata, S. Ueno, M. Kita. Mater. Transact. 44, 10, 2124 (2003)
  45. J. Yao, C. Wang. Int. Photoenergy 2010, 643182 (2010). doi:10.1155/2010/643182

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru