Ovchinnikov O.V.1, Smirnov M.S.1, Aslanov S.V.1, Perepelitsa A.S.1
1Voronezh State University, Voronezh, Russia
Email: ovchinnikov_o_v@rambler.ru, smirnov_m_s@mail.ru, Windmaster7@yandex.ru, a-perepelitsa@yandex.ru
The structural and optical properties of colloidal Ag2S quantum dots in various environments are investigated. With the help of transmission electron microscopy, X-ray diffraction and energy-dispersive X-ray analysis the formation of colloidal Ag2S quantum dots with an average size of 2-3 nm with a monoclinic crystal lattice, and Ag2S/SiO2 core-shell systems based on them, has been established. The change in the luminescence quantum yield of quantum dots with the change of the surface environment state is shown. The decoration of TiO2 nanoparticles of 10-15 nm in size with Ag2S quantum dots was performed and the influence of the structure of the interfaces of quantum dots and their environment (2-mercaptopropionic acid, water, ethylene glycol, SiO2 dielectric shell with a thickness of 0.6 nm and 2.0 nm) on the formation of TiO2-Ag2S heterosystems was analyzed. For Ag2S quantum dots passivated with 2-mercaptopropionic acid, signs of charge phototransfer after adsorption on TiO2 nanoparticles surface have been established. Signs of reactive oxygen species appearance due to charge phototransfer in heterosystem are enstablished, based on methylene blue photobleaching under excitation of heterosystem outside of TiO2 fundamental absorption region, Keywords: Quantum dots, photocatalysis, luminescence, titanium dioxide, silver sulfide.
- H.L. Chou, B.-J. Hwang, C.-L. Sun. New and Future Developments in Catalysis. Elsevier (2013) P. 217. doi 10.1016/B978-0-444-53880-2.00014-4
- J.J. Ng, K.H. Leong, L.C. Sim, W.-D. Oh, C. Dai, P. Saravanan. Nanomaterials for Air Remediation. Elsevier (2020) P. 193. doi 10.1016/B978-0-12-818821-7.00010-5
- M. Sakar, R.M. Prakash, K. Shinde, G.R. Balakrishna. Int. J. Hydrogen Energy. 45, 13, 7691 (2020). doi 10.1016/j.ijhydene.2019.04.222
- A. Kubackaa, U. Caudillo-Flores, I. Barba-Nieto, M. Fernandez-Garci a. Appl. Catal. A 610, 25, 117966 (2021). doi 10.1016/j.apcata.2020.117966
- S. Shen, C. Kronawitter, G. Kiriakidis. J. Materiomics 3, 1, 1 (2017). doi 10.1016/j.jmat.2016.12.004
- M. Pawar, S.T. Sendogdular, P. Gouma. J. Nanomaterials 2018, 5953609 (2018). doi 10.1155/2018/5953609
- A.L. Linsebigler, G. Lund, J.T. Yates Jr. Chem. Rev. 95, 3, 735 (1995). doi 10.1021/cr00035a013
- K. Nakata, A. Fujishima. J. Photochem. Photobiol. C 13, 3, 169 (2012). doi 10.1016/j.jphotochemrev.2012.06.001
- J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann. Chem. Rev. 114, 19, 9919 (2014). doi 10.1021/cr5001892
- Z. Bao, S. Wang, X. Yu, Y. Gao, Z. Wen. Water Air Soil Pollut. 230, 169 (2019). doi 10.1007/s11270-019-4219-5
- O.R. Fonseca-Cervantes, A. Perez-Larios, V.H. Romero Arellano, B. Sulbaran-Rangel, C.A. Guzman Gonzalez. Processes 8, 9, 1032. (2020). doi 10.3390/pr8091032
- M. Janczarek, E. Kowalska. Catalysts 7, 11, 317 (2017). doi 10.3390/catal7110317
- S.B. Rawal, S. Bera, D. Lee, D.-J. Jang, W. In Lee. Catal. Sci. Technol., 3, 1822 (2013). doi 10.1039/C3CY00004D
- C. Del Cacho, O. Geiss, P. Leva, S. Tirendi, J. Barrero-Moreno. Nanotechnology in Eco-Efficient Construction. Woodhead Publishing (2013) P. 343. doi 10.1533/9780857098832.3.343
- I. Zumeta-Dube, V.-F. Ruiz-Ruiz, D. Diaz, S. Rodil-Posadas, A. Zeinert. Phys. Chem. C, 118, 22, 11495 (2014). doi 10.1021/jp411516a
- A. Badawi. Physica E 109, 107 (2019). doi 10.1016/j.physe.2019.01.018
- R. Gui, H. Jin, Z. Wang, L. Tan, Coord. Chem. Rev. 296, 15, 91 (2015). doi 10.1016/j.ccr.2015.03.023
- R. Gui, A. Wan, X. Liu, W. Yuan, H. Jin. Nanoscale 6, 10, 5467 (2014). doi 10.1039/C4NR00282B
- R. Gui, J. Sun, D. Liu, Y. Wang, H. Jin. Dalton Trans. 43, 44, 16690 (2014). doi 10.1039/C4DT00699B
- R. Tang, J. Xue, B. Xu, D. Shen, G.P. Sudlow, S. Achilefu. ACS Nano 9, 1, 220 (2015). doi 10.1021/nn5071183
- Y. Xie, S.H. Yoo, C. Chen, S. Oh. Mater. Sci. Eng. B 177, 1, 106. (2012). doi 10.1016/j.mseb.2011.09.021
- B. Liu, D. Wang, Y. Zhang, H. Fan, Y. Lin, T. Jiang, T. Xie. Dalton Trans. 42, 2232 (2014). doi 10.1039/C2DT32031B
- K. Nagasuna, T. Akita, M. Fujishima, H. Tada. Langmuir. 27, 11, 7294 (2011). doi 10.1021/la200587s
- M. Smirnov, O. Ovchinnikov. J. Lumin. 227, 117526 (2020). doi 10.1016/j.jlumin.2020.117526
- O.V. Ovchinnikov, I.G. Grevtseva, M.S. Smirnov, T.S. Kondratenko, A.S. Perepelitsa, S.V. Aslanov, V.U. Khokhlov, E.P. Tatyanina, A.S. Matsukovich. Opt. Quantum Electron. 52, 4, 198 (2020). doi 10.1007/s11082-020-02314-8
- O.V. Ovchinnikov, M.S. Smirnov, B.I. Shapiro, T.S. Shatskikh, A.S. Perepelitsa, N.V. Korolev. Semiconductors 49, 3, 373 (2015). https://doi.org/10.1134/S1063782615030173
- C.M. Wilke, C. Petersen, M.A. Alsina, J.-F. Gaillard, K.A. Gray. Environ. Sci.: Nano, 6, 115 (2019). doi 10.1039/C8EN01159A
- X. Liu, L. Zhu, X. Wang, X. Meng. Env. Sci. Pollution Res., 27, 13590 (2020). doi 10.1007/s11356-020-07960-9
- T.S. Kondratenko, M.S. Smirnov, O.V. Ovchinnikov, A.I. Zvyagin, T.A. Chevychelova, I.V. Taydakov.Bull. Lebedev Phys. Inst. 46, 210 (2019). doi /10.3103/S106833561906006X
- O.V. Ovchinnikov, S.V. Aslanov, M.S. Smirnov, A.S. Perepelitsa, T.S. Kondratenko, A.S. Selyukov, I.G. Grevtseva. Opt. Mater. Express 11, 1, 89 (2021). doi 10.1364/OME.411432
- O.V. Ovchinnikov, S.V. Aslanov, M.S. Smirnov, I.G. Grevtseva, A.S. Perepelitsa. RSC Adv. 9, 37312 (2019). doi 10.1039/C9RA07047H
- J.R. Lakowicz. Principles of Fluorescence Spectroscopy. Springer, N.Y. (2006). doi 10.1007/978-0-387-46312-4
- S. Reindl, A. Penzkofer, S.-H. Gong, M. Landthaler, R.M. Szeimies, C. Abels, W. Baumler. J. Photochem. Photobiol. A 105, 65 (1997). doi 10.1016/S1010-6030(96)04584-4
- A.J. Frueh. Z. Kristallogr. 110, 136 (1958)
- H.F. Poulsen, J. Neuefeind, H.-B. Neumann, J.R. Schneider. J. Non-Crystalline Solids 188, 1, 74 (1995). doi 10.1016/0022-3093(95)00095-X
- S. Music, N. Filipovic-Vincekovic, L. Sekovanic. Braz. J. Chem. Eng. 28, 1, 89 (2011). doi 10.1590/S0104-66322011000100011
- H. Ijadpanah-Saravy, M. Safari, A. Khodadadi-Darban, A. Rezaei. Anal.Lett. 47, 10, 1772 (2014). doi: 10.1080/00032719.2014.880170
- S. Lin, Y. Feng, X. Wen, P. Zhang, S. Woo, S. Shrestha, G. Conibeer, S. Huang. J. Phys. Chem. 119, 867 (2015). doi 10.1021/jp511054g
- Y. Kayanuma. Phys. Rev. B: Condens. Matter Mater. Phys. 38, 9797 (1988). doi 10.1103/PhysRevB.38.9797
- A.B. Murphy. Solar Energy Mater. Solar Cells 91, 14, 1326 (2007). doi 10.1016/j.solmat.2007.05.005
- V.M. Ievlev, S.B. Kushchev, A.N. Latyshev, L.Yu. Leonova, O.V. Ovchinnikov, M.S. Smirnov, E.V. Popova, A.V. Kostyuchenko, S.A. Soldatenko. FTP (in Russian) 48, 7, 875 (2014)
- A.S. Perepelitsa, O.V. Ovchinnikov, M.S. Smirnov, T.S. Kondratenko, I.G. Grevtseva, S.V. Aslanov, V.Y. Khokhlov. J. Luminescence 231, 117805 (2021). doi 10.1016/j.jlumin.2020.117805
- A. Mills, J. Wang. J. Photochem. Photobiol. A 124, 1, 123 (1999) doi 10.1016/S1010-6030(99)00143-4
- S. Otsuka-Yao-Matsuo, T. Omata, S. Ueno, M. Kita. Mater. Transact. 44, 10, 2124 (2003)
- J. Yao, C. Wang. Int. Photoenergy 2010, 643182 (2010). doi:10.1155/2010/643182
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.