Belov D. A.
1, Ikonikov A. V.
1, Pushkarev S. S.
2, Galiev R. R.
2, Ponomarev D. S.
2, Khokhlov D.R.
1, Ushakov D. V.
3, Afonenko A. A.
3, Morozov S. V.
4, Gavrilenko V. I.
4, Khabibullin R. A.
2,51Department of Physics, Lomonosov Moscow State University, Moscow, Russia
2 Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow, Russia
3Belarusian State University, Minsk, Republic of Belarus
4Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
5Ioffe Institute, St. Petersburg, Russia
Email: s_s_e_r_p@mail.ru, ushakovdv@bsu.by, afonenko@bsu.by, khabibullin@isvch.ru
In this work, we conduct research of spectral and power characteristics of quantum cascade lasers (QCLs) based on a GaAs/Al0.15Ga0.85As active region emitting at 2.3 (A), 3.2 (B) and 4.1 (C) THz. The QCL devices had a double-metal Au waveguide and operated in pulsed mode with 1.5-9 μs pulses at 20 Hz repetition rate. Using the integral output power curves measured with different pulse durations, we consider the potential mechanisms of QCL temperature degradation using Arrhenius plots. Moreover, we present the spectra of the lasers measured at fixed operating points for devices A, C and with current scanning for device B in a wide temperature range from 5 to 120 K. We hope that our results will prove useful for research concerning QCL maximum operating temperatures. Keywords: quantum cascade laser, terahertz range, quantum well, molecular beam epitaxy, activation energy, temperature degradation.
- M.S. Vitiello, G. Scalari, B. Williams, P.D. Natale. Opt. Express, 23, 5167 (2015)
- G. Liang, T. Liu, Q.J. Wang. IEEE J. Select. Top. Quant. Electron., 23, 1200118 (2017)
- L. Bosco, M. Franckie, G. Scalari, M. Beck, A. Wacker, J. Faist. Appl. Phys. Lett., 115, 010601 (2019)
- A. Khalatpour, A.K. Paulsen, C. Deimert, Z.R. Wasilewski, Q. Hu. Nature Photonics, 15, 16 (2021)
- S. Fathololoumi, E. Dupont, C.W.I. Chan, Z.R. Wasilewski, S.R. Laframboise, D. Ban, A. Matyas, C. Jirauschek, Q. Hu, H.C. Liu. Opt. Express, 20, 3866 (2012)
- S. Khanal, L. Zhao, J. Reno, S. Kumar. J. Opt., 16, 094001 (2014)
- H. Callebaut, S. Kumar, B.S. Williams, Q. Hu, J.L. Reno. Appl. Phys. Lett., 83, 207 (2003)
- P. Slingerland, C. Baird, R.H. Giles. Semicond. Sci. Technol., 27, 65009 (2012)
- M.S. Vitiello, G. Scamarcio, V. Spagnolo, B.S. Williams, S. Kumar, Q. Hu, J.L. Reno. Appl. Phys. Lett., 86, 111115 (2005)
- A. Albo, Q. Hu. Appl. Phys. Lett., 106, 131108 (2015)
- R.A. Khabibullin, N.V. Shchavruk, D.S. Ponomarev, D.V. Ushakov, A.A. Afonenko, K.V. Maremyanin, O.Yu. Volkov, V.V. Pavlovskiy, A.A. Dubinov. Opto-Electron. Rev., 27, 329 (2019).
- R.A. Khabibullin, N.V. Shchavruk, A.Yu. Pavlov, D.S. Ponomarev, K.N. Tomosh, R.R. Galiev, P.P. Maltsev, A.E. Zhukov, G.E. Tsyrlin, F.I. Zubov, Zh.I. Alferov. FTP 50, 1395 (2016) (in Russian)
- O.Yu. Volkov, I.N. Dyuzhikov, M.V. Logunov, S.A. Nikitov, V.V. Pavlovsky, N.V. Shchavruk, A.Yu. Pavlov, R.A. Khabibullin. Radiotekhnika i elektronika, 63, 981 (2018) (in Russian)
- J.M. Hensley, J. Montoya, M.G. Allen, J. Xu, L. Mahler, A. Tredicucci, H.E. Beere, D.A. Ritchie. Opt. Express, 17 (22), 20476 (2009)
- A.A. Lastovkin, A.V. Ikonnikov, V.I. Gavrilenko, A.V. Antonov, Yu.G. Sadofiev. Izv. vuzov. Radiofizika, 54, 676 (2011) (in Russian)
- R.A. Khabibullin, N.V. Shchavruk, D.S. Ponomarev, D.V. Ushakov, A.A. Afonenko, I.S. Vasilevsky, A.A. Zaitsev, A.I. Danilov, O.Yu. Volkov, V.V. Pavlovsky, K.V. Maremyanin, V.I. Gavrilenko. FTP, 52 (11), 1268 (2018) (in Russian)
- A.A. Lastovkin, A.V. Ikonnikov, A.V. Antonov, V.Ya. Aleshkin, V.I. Gavrilenko, Yu.G. Sadofiev. Pis'ma ZhTF, 42 (5), 15 (2016) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.