Different modes of three coupled generators capable of demonstrating quasiperiodic oscillations
Kuznetsov A.P. 1, Sedova Yu.V. 1, Stankevich N.V. 1
1Saratov Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
Email: kuzalexp@yandex.ru, sedovayv@yandex.ru, stankevichnv@mail.ru

PDF
The dynamics of three coupled generators capable of demonstrating autonomous quasiperiodic oscillations is considered. The complex structure of Lyapunov charts of the system revealing invariant tori of different (high) dimensions, quasiperiodic bifurcations, Arnold resonance web, and other features is discussed. There was revealed the possibility of four-frequency tori in case of individual subsystems that exhibit the limit cycle mode. Keywords: generator, quasi-periodic oscillations, invariant tori, Lyapunov exponents.
  1. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: a universal concept in nonlinear science (Cambridge University Press, 2001)
  2. T. Matsumoto, Khaoticheskie sistemy. Tematichesky vypusk TIIER, 75 (8), 66 (1987). (in Russian)
  3. V.S. Anishchenko, S.M. Nikolaev, Tech. Phys. Lett., 31 (10), 853 (2005). DOI: 10.1134/1.2121837
  4. V. Anishchenko, S. Nikolaev, J. Kurths, Phys. Rev. E., 73 (5), 056202 (2006). DOI: 10.1103/PhysRevE.73.056202
  5. V.S. Anishchenko, T.E. Vadivasova, Lektsii po nelineynoy dinamike (NITs RKhD, M.-Izhevsk, 2011). (in Russian)
  6. A.P. Kuznetsov, N.V. Stankevich, Izv. vuzov. Prikladnaya nelineynaya dinamika, 23 (3), 71 (2015). (in Russian) DOI: 10.18500/0869-6632-2015-23-3-71-93
  7. A.P. Kuznetsov, S.P. Kuznetsov, N.A. Shchegoleva, N.V. Stankevich, Physica D, 398, 1 (2019). DOI: 10.1016/j.physd.2019.05.014
  8. A.P. Kuznetsov, Yu.V. Sedova, Tech. Phys. Lett., 48 (2), 85 (2022). DOI: 10.21883/TPL.2022.02.52858.18925
  9. A.P. Kuznetsov, Yu.V. Sedova, N.V. Stankevich, ZhTF, 91 (11), 1619 (2021). DOI: 10.21883/JTF.2021.11.51519.145-2 (in Russian)
  10. H. Broer, C. Simo, R. Vitolo, Regul. Chaotic Dyn., 16 (1-2), 154 (2011). DOI: 10.1134/S1560354711010060
  11. Yu.A. Kuznetsov, H.G.E. Meijer, Numerical bifurcation analysis of maps: from theory to software (Cambridge University Press, 2019), p. 44--49
  12. K. Kamiyama, M. Komuro, T. Endo, K. Aihara, Int. J. Bifur. Chaos, 24 (12), 1430034 (2014). DOI: 10.1142/S0218127414300341
  13. M. Komuro, K. Kamiyama, T. Endo, K. Aihara, Int. J. Bifur. Chaos, 26 (07), 1630016 (2016). DOI: 10.1142/S0218127416300160
  14. M. Sekikawa, N. Inaba, Int. J. Bifur. Chaos, 31 (01), 2150009 (2021). DOI: 10.1142/S0218127421500097
  15. H. Broer, C. Simo, R. Vitolo, Bull. Belg. Math. Soc. Simon Stevin, 15 (5), 769 (2008). DOI: 10.36045/bbms/1228486406
  16. Yu.P. Emelianova, A.P. Kuznetsov, I.R. Sataev, L.V. Turukina, Physica D, 244 (1), 36 (2013). DOI: 10.1016/j.physd.2012.10.012

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru