Electronic spectroscopy of graphene obtained by ultrasonic dispersion
Kastsova A. G.1, Glebova N. V. 1, Nechitailov A. A. 1, Krasnova A.O. 1, Pelageikina A.O.1, Eliseyev I. A. 1
1Ioffe Institute, St. Petersburg, Russia
Email: glebova@mail.ioffe.ru, aan.shuv@mail.ioffe.ru, krasnova@mail.ioffe.ru, pelaanna@yandex.ru, ilya.eliseyev@mail.ioffe.ru

PDF
A technology for obtaining graphene by means of ultrasonic dispersion of thermally expanded graphite in the presence of a surface-active polymer Nafion is presented. The technology makes it possible to obtain large amounts of low-layer (1-3 layers) graphene in a relatively short time. An approach to control the dispersion process based on UV spectroscopy of dispersions is described. A mechanism is proposed for the effect of a surface-active polymer on the production of low-layer graphene by ultrasonic dispersion. Keywords: graphene, ultrasonic dispersion, thermally expanded graphite.
  1. A.K. Geim, Science, 324 (5934), 1530 (2009). DOI: 10.1126/science.1158877
  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 306 (5696), 666 (2004). DOI: 10.1126/science.1102896
  3. E.A. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Nano Lett., 8 (8), 2277 (2008). DOI: 10.1021/nl800957b
  4. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Rohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature, 442, 282 (2006). DOI: 10.1038/nature04969
  5. J. Ding, P. Liu, M. Zhou, H. Yu, ACS Sustain. Chem. Eng., 8 (40), 15344 (2020). DOI: 10.1021/acssuschemeng.0c05679
  6. G. Tang, X. Hou, Y. Wang, Z. Yan, T. Ren, L. Ma, X. Huang, Ch. Wang, ACS Appl. Nano Mater., 5 (1), 361 (2022). DOI: 10.1021/acsanm.1c03173
  7. S.A. Grigoriev, V.N. Fateev, A.S. Pushkarev, I.V. Pushkareva, N.A. Ivanova, V.N. Kalinichenko, M.Yu. Presnyakov, X. Wei, Materials, 11 (8), 1405 (2018). DOI: 10.3390/ma11081405
  8. I.V. Pushkareva, A.S. Pushkarev, M.A. Soloviev, V.N. Kalinichenko, R.G. Chumakov, Y. Liang, P. Millet, S.A. Grigoriev, Catalysts, 11 (2), 256 (2021). DOI: 10.3390/catal11020256
  9. N.V. Glebova, A.A. Nechitailov, A.O. Krasnova, Russ. J. Appl. Chem., 93 (7), 1034 (2020). DOI: 10.1134/S1070427220070137
  10. F.T. Johra, J. Lee, W. Jung, J. Ind. Eng. Chem., 20 (5), 2883 (2014). DOI: 10.1016/j.jiec.2013.11.022
  11. Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Chem. Mater., 21 (13), 2950 (2009). DOI: 10.1021/cm9006603
  12. Q. Lai, Sh. Zhu, X. Luo, M. Zou, Sh. Huang, AIP Adv., 2 (3), 032146 (2012). DOI: 10.1063/1.4747817
  13. A.R. Baggio, M.S.C. Santos, F.H. Veiga-Souza, R.B. Nunes, P.E.N. Souza, S.N. Bao, A.O.T. Patrocinio, D.W. Bahnemann, L.P. Silva, M.J.A. Sales, L.G. Paterno, J. Phys. Chem. A, 122 (34), 6842 (2018). DOI: 10.1021/acs.jpca.8b05660
  14. V.I. Mazin, E.V. Mazin, Sposob polucheniya poristogo uglerodnogo materiala na osnove vysokorashcheplennogo grafita, patent RF N 2581382 (publ. 20.04.2016). (in Russian)
  15. L.G Cancado, M. Gomes da Silva, E.H. Martins Ferreira, F. Hof, K. Kampioti, K. Huang, A. Penicaud, C.A. Achete, R.B. Capaz, A. Jorio, 2D Mater., 4 (2), 025039 (2017). DOI: 10.1088/2053-1583/aa5e77
  16. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett., 97 (18), 187401 (2006). DOI: 10.1103/PhysRevLett.97.187401

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru