Dispersive transport of Hole polarons in MOS-structures after the ionizing irradiation
Aleksandrov O. V. 1
1St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: Aleksandr_ov@mail.ru

PDF
It is shown that the description of the dispersive transport of hole polarons based on the multiple capture model makes it possible to quantitatively describe the kinetics of the accumulation and relaxation of space charge in MOS-structures after ionizing irradiation at low temperatures (80-293 K). Modeling of time dependences of threshold voltage on temperature, electric field strength and gate oxide thickness is carried out. It is shown that the kinetics of space charge relaxation is determined by the hopping transport of hole polarons with the levels of localized states in the range of 0.08-0.55 eV, the concentration of polaron states, the influence of the electric field strength on the average polaron energy, as well as gate oxide thickness on dispersive parameter. The polaron radius is estimated. Keywords: MOS-structure, the ionizing radiation, dispersive transport, polarons, modeling.
  1. T.R. Oldham, F.B. McLean. IEEE Trans. Nucl. Sci., 50 (3), 483 (2003)
  2. K.I. Tapero, V.N. Ulimov, A.M. Chlenov. Radiatsionnye effekty v kremnievykh integral'nykh skhemakh kosmicheskogo primeneniya (M., BINOM, 2012) (in Russian)
  3. O.V. Aleksandrov. Semiconductors, 55 (2), 207 (2021)
  4. F.B. McLean, N.E. Boesch, J.M. McGarrity. IEEE Trans. Nucl. Sci., 23 (6), 1506 (1976)
  5. N.E. Boesch, J.M. McGarrity, F.B. McLean. IEEE Trans. Nucl. Sci., 25 (3), 1012 (1978)
  6. N.E. Boesch, F.B. McLean, J.M. McGarrity, P.S. Winokur. IEEE Trans. Nucl. Sci., 25 (6), 1239 (1978)
  7. R.C. Hughes. Phys. Rev. B, 15 (4), 2012 (1977)
  8. H. Scher, E.W. Montrol. Phys. Rev. B, 12 (6), 2455 (1975)
  9. J. Noolandi. Phys. Rev. B, 16 (10), 4466, 4474 (1977)
  10. B. Hartenstein, A. Jakobs, K.W. Kehr. Phys. Rev. B, 54 (12), 8574 (1996)
  11. O.L. Curtis, J.R. Srour. J. Appl. Phys., 48 (9), 3819 (1977)
  12. O.V. Aleksandrov. Semiconductors, 54 (10), 1215 (2020)
  13. V.A. Gritsenko, R.M. Ivanov, Yu.N. Morokov. J. Exp. Theor. Phys., 81 (6), 1208 (1995)
  14. J.M. Benedetto, H.E. Boesch. IEEE Trans. Nucl. Sci., 33 (6), 1318 (1986)
  15. V.I. Arkhipov, A.I. Rudenko. Phil. Mag. B, 45 (2), 189, 209 (1982)
  16. R.J. Krantz, L.W. Aukerman, T.C. Zietlow. IEEE Trans. Nucl. Sci., 34 (6), 1196 (1987)
  17. N.B. Brandt, V.A. Kul'bachinskii. Kvazichastitsy v fizike kondensirovannogo sostoyaniya (M., Fizmatlit, 2005), p. 396 (in Russian)
  18. D.L. Griscom. J. Non-Cryst. Sol., 149 (1-2), 137 (1992)
  19. G.Ya. Krasnikov, N.A. Zaitsev. Sistema kremnii-dioksid kremniya submikronnykh SBIS (M., Tekhnosfera, 2003) (in Russian)
  20. O.V. Aleksandrov, A.I. Dusj. Semiconductors, 42 (11), 1370 (2008)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru