On THz cyclotron resonance continuous wave lasers in graphene in crossed E,H fields at T=300 K
Andronov A. A.
1, Pozdniakova V. I.
11Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: andron@ipmras.ru, vera@ipmras.ru
In framework of classical consideration of electron trajectories in crossed E,H fields and conductivity of electron system on cyclotron resonance in single layer graphene possibility to achieve THz cyclotron lasing in hexagonal boron nitride-single layer graphene sandwiches is discussed. By simplified consideration with known data on scattering rate in the sandwiches it is demonstrated that the CW laser action can be achieved in high quality sandwiches at room temperature at frequencies above about 0.5-1 THz in magnetic field above 5000-10000 Gauss. Short discussions of Landau level quantization in crossed fields, amplification on cyclotron harmonics and cyclotron amplification at low temperatures are given. Keywords: graphene, cyclotron resonance, THz amplification, Landau level population inversion.
- A.A. Andronov, V.A. Kozlov. JETP Lett., 17 (2), 124 (1973)
- A.A. Andronov, V.A. Kozlov, L.S. Mazov, V.N. Shastin. JETP Lett., 30 (9), 551 (1979)
- Yu.I. Ivanov, Yu.B. Vasiliev. Tech. Phys. Lett., 9 (10), 613 (1983)
- E. Gornik, A.A. Andronov. (eds Infrared semiconductor lasers) Optical and Quant. Electron., 23, S1111 (1991)
- P. Pfeffer, P. Pfeffer, W. Zawadzki, K. Unterrainer, C. Kremser, C. Wurzer, E. Gornik, B. Murdin, C.R. Pidgeon. Phys. Rev. B, 47 (8), 4522 (1993)
- S. Boubanga-Tombet, D. Yadav, W. Knap, V.V. Popov, T. Otsuji. Phys. Rev. X, 10, 031004 (2020). arXiv:1801, 04518 (2018)
- D.A. Bandurin, D. Svintsov, I. Gayduchenko, S.G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I.V. Grigorieva, M. Polini, G.N. Goltzman, A.K. Geim, G. Fedorov. Nature Commun., 9, 5392 (2018).
- D.A. Bandurin, E. Monch, K. Kapralov, I.Y. Phinney, K. Linder, S. Liu, J.H. Edgar, I.A. Dmitriev, P. Jarillo-Herrero, D. Svintsov, S.D. Ganichev. Nature Phys., 18, 462 (2022). https://doi.org/10.1038/s41567-021-01494-8
- M.A. Yamoah, W. Yang, E. Pop, D. Goldhaber-Gordon. ACS Nano, 11 (10), 9914 (2017)
- J. Chauhan, J. Guo. Appl. Phys. Lett., 95, 023120 (2009)
- A.I. Berdyugin, N. Xin, H. Gao, S. Slizovskiy, Z. Dong, S. Bhattacharjee, P. Kumaravadivel, S. Xu, L.A. Ponomarenko, M. Holwill, D.A. Bandurin, M. Kim, Y. Cao, M.T. Greenaway, K.S. Novoselov, I.V. Grigorieva, K. Watanabe, T. Taniguchi, V.I. Fal'ko, L.S. Levitov, R.K. Kumar, A.K. Geim. Science, 375 (6579), 430 (2022)
- I.V. Oladyshkin, S.B. Bodrov, Y.A. Sergeev, A.I. Korytin, M.D. Tokman. Phys. Rev. B, 96 (15), 155401 (2017)
- A.A. Andronov, V.I. Pozdnyakova. Semiconductors, 54 (9), 1078 (2020)
- L.E. Vorobyev, S.N. Danilov, V.N. Tulupenko, D.A. Firsov. JETP Lett., 73 (5), 253 (2001)
- T. Fang, A. Konar, H. Xing, D. Jena. Phys. Rev. B, 84, 125450 (2011).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.