Influence of ion cleaning of front facet of 9xx nm InGaAs/AlGaAs/GaAs diode lasers on their maximal output power
Tokarev A. S.
1, Lapshina O.A.
1, Kozyrev A.A.
1,2,31LLC «NPP «Inject», Saratov, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
3Saratov State University, Saratov, Russia
Email: arhangel92r@mail.ru, oksana.sh63@mail.ru, equilibriummm@yandex.ru
This paper reports on the study of the effect of ion cleaning of emitting cleaved facet of 9xx nm laser diodes based on InGaAs/AlGaAs/GaAs on their limiting radiation power. Measured maximal power and the percentage of laser diodes with a visual manifestation of catastrophic optical damage in the active region were analyzed. It was found that short-term (1 min) low-energy treatment with argon and hydrogen ions does not lead to changes in the parameters of laser diodes, while treatment with nitrogen ions results in a decrease in the maximal output power and an increase in the probability of catastrophic optical damage. It is also shown that the use of an ion source based on electron cyclotron resonance leads to better results compared to a End Hall source or radiofrequency source with inductively coupled plasma, due to the lower energy of the ions. Keywords: Ion cleaning, laser diode, catastrophic optical damage, maximal output power, passivation, nitridization.
- Y. Liu, K. Ebadi, A.K. Sunnetcioglu, S. Gundogdu, S. Sengul, Y. Zhao, Y. Lan, Y. Zhao, G. Yang, A. Demir. Opt. Express, 30 (18), 31539 (2022)
- H. Xu, X. Li, L. Yan. IOP Conf. Series: Earth and Environmental Sci., 772, 012050 (2021)
- H.-W. Xu, X.-J. Li, L.-H. Yan, J.-L. Niu, J.-F. Ning, H.-T. Peng, Y. Zhang. IOP Conf. Series: J. Phys.: Conf. Ser., 1176, 042033 (2019)
- R.W. Lambert, T. Ayling, A.F. Hendry, J.M. Carson, D.A. Barrow, S. McHendry, C.J. Scott, A. .McKee, W. Meredith. J. Light. Technol., 24 (2), 956 (2006)
- C.D. Thurmond, G. Schwartz, G.W. Kammlott, B. Schwartz. J. Electrochem. Soc., 127 (6), 1366 (1980)
- F. Capasso, G. Williams. J. Electrochem. Soc., 129 (4), 821 (1982)
- L. Tu, E. Schubert, M. Hong, G. Zydzik. J. Appl. Phys., 80 (11), 6448 (1996)
- T. Muro, Y. Kato, T. Kinoshita, Y. Watanabe. Rev. Sci. Instrum., 81 (4), 1 (2010)
- X. Wang, L. Zhu, Y. Zhao, J. Kong, C. Wang, C. Xiong, X. Ma, S. Liu. Infr. and Laser Eng., 48 (1), 0105002 (2019)
- P. Ressel, G. Erbert, U. Zeimer, K. Hausler, G. Beister, B. Sumpf, A. Klehr, G. Trankle. IEEE Photon. Technol. Lett., 17 (5), 962 (2005)
- O. Richarda, S. Blaisb, R. Aresa, V. Aimeza, A. Jaouad. Microelectron. Eng., 233, 11139 (2020)
- J.E. Boschker, U. Spengler, P. Ressel, M. Schmidbauer, A. Mogilatenko, A. Knigge. IEEE Photon. J., 14 (3), 1531606 (2022)
- Y. Wang, H. Qu, Y. Wang, F. Dong, Z. Chen, W. Zheng. ACS Omega, 4 (23), 20205 (2019)
- C. Silfvenius, Y. Sun, P. Blixt, C. Lindstroem, A. Feitisch. SPIE, 5711, 189 (2005)
- S. Xiongwen, X. Chen, T. Zeng-xia, S. Guang-di. Chinese Phys. Lett., 23 (1), 124 (2006)
- Y. Lan, G. Yang, Y. Zhao, Y. Liu, A. Demir. Appl. Surf. Sci., 596, 15350 (2022)
- J. Hashimoto, N. Ikoma, M. Murata, J. Fukui, T. Nomaguchi, T. Katsuyama. Japanese J. Appl. Phys., 39 (5), 2761 (2000)
- N.A. Volkov, K.Yu. Telegin, N.V. Gultikov, D.R. Sabitov, A.Yu. Andreev, I.V. Yarotskaya, A.A. Padalitsa, M.A. Ladugin, A.A. Marmalyuk, L.I. Shestak, A.A. Kozyrev, V.A. Panarin. Kvant. elektron., 52 (2), 1 (2022). (in Russian)
- S.S. Anantathanasarn, S. Ootomo, T. Hashizume, H. Hasegawa. Appl. Surf. Sci., 159, 456 (2000)
- V. Augelli, T. Ligonzo, A. Minafra, L. Schiavulli, V. Capozzi, G. Perna, M. Ambrico, M. Losurdo. J. Luminesc., 102--103, 519 (2003)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.