Investigation of photoluminescence in the InGaAs/GaAs system with 1100-nm range quantum dots
Babichev A.V.
1, Komarov S.D.2, Tkach Yu.S.1, Nevedomskiy V.N.1, Blokhin S.A.1, Kryzhanovskaya N.V.2,3, Gladyshev A.G.4, Karachinsky L.Ya.4, Novikov I.I.4
1Ioffe Institute, St. Petersburg, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
3HSE University, St. Petersburg, Russia
4ITMO University, St. Petersburg, Russia
Email: a.babichev@mail.ioffe.ru
The results of studying the optical properties of InGaAs quantum dots are presented. Single-layer InGaAs quantum dots with a height of 5.3, 3.6 and 2.6 monolayers, as well as three-stacked layers of tunnel-uncoupled quantum dots with a height of 2.6 monolayers were formed by molecular-beam epitaxy according to the Stransky-Krastanov mechanism on GaAs substrates, using the partial capping and annealing technique. A decrease in the size of quantum dots makes it possible to carry out a blueshift of the photoluminescence spectrum maximum from 1200 nm to 1090 nm, and an increase in the number of QD layers makes it possible to compensate for the decrease in the peak intensity. It is shown that this type of quantum dots is suitable for creating the lasers active regions with a vertical microcavity for neuromorphic computing. Keywords: molecular-beam epitaxy, gallium arsenide, InGaAs, Stranski-Krastanow mode.
- D. Bimberg, M. Grundmann, N. N. Ledentsov. Quantum Dot Heterostructures (Chichester, England, John Wiley \& Sons Ltd, 1999) p. 344
- T. Heuser, J. Grose, S. Holzinger, M.M. Sommer, S. Reitzenstein. IEEE J. Select. Top. Quant. Electron., 26 (1), 1 (2020)
- T. Heuser, J. Grob e, A. Kaganskiy, D. Brunner, S. Reitzenstein. APL Photonics, 3 (11), 116103 (2018)
- I.I. Novikov, A.M. Nadtochiy, A.Yu. Potapov, A.G. Gladyshev, E.S. Kolodeznyi, S.S. Rochas, A.V. Babichev, V.V. Andryushkin, D.V. Denisov, L.Ya. Karachinsky, A.Yu. Egorov. J. Luminesc., 239, 118393 (2021)
- S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Hofling, A. Forchel. Appl. Phys. Lett., 93 (6), 061104 (2008)
- A. Rantamaki, G.S. Sokolovskii, S.A. Blokhin, V.V. Dudelev, K.K. Soboleva, M.A. Bobrov, A.G. Kuzmenkov, A.P. Vasil'ev, A.G. Gladyshev, N.A. Maleev, V.M. Ustinov, O. Okhotnikov. Optics Lett., 40 (14), 3400 (2015)
- J. Grob e, P. Mrowinski, N. Srocka, S. Reitzenstein. Appl. Phys. Lett., 119 (6), 061103 (2021)
- X. Hu, Y. Zhang, D. Guzun, M.E. Ware, Y.I. Mazur, C. Lienau, G.J. Salamo. Sci. Rep., 10 (1), 10930 (2020)
- G. Sek, P. Poloczek, K. Ryczko, J. Misiewicz, A. Loffler, J.P. Reithmaier, A. Forchel. J. Appl. Phys., 100 (10), 103529 (2006)
- A. Loffler. Selbstorganisiertes Wachstum von (Ga)InAs/GaAs-Quantenpunkten und Entwicklung von Mikroresonatoren hochster Gute fur Experimente zur starken Exziton-Photon-Kopplung", Dissertation (Wurzburg, Germany, 2008) p. 191. https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/year/2008/docId/2589 URN: urn:nbn:de:bvb:20-opus-30323
- A. Loffler, J.P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, A. Forchel. Appl. Phys. Lett., 86 (11), 111105 (2005)
- P. Poloczek, G. Sek, J. Misiewicz, A. Loffler, J.P. Reithmaier, A. Forchel. J. Appl. Phys., 100 (1), 013503 (2006)
- S. Reitzenstein, S. Munch, P. Franeck, A. Rahimi-Iman, A. Loffler, S. Hofling, L. Worschech, A. Forchel. Phys. Rev. Lett., 103 (12), 127401 (2009)
- C. Hopfmann, A. Musia, M. Straub, A. M. Barth, M. Glassl, A. Vagov, M. Straub, C. Schneider, S. Hofling, M. Kamp, V.M. Axt, S. Reitzenstein. Phys. Rev. B, 92 (24), 245403 (2015)
- A. Loffler, J.-P. Reithmaier, A. Forchel, A. Sauerwald, D. Peskes, T. Kummell, G. Bacher. J. Cryst. Growth, 286 (1), 6 (2006)
- N. Ozaki, S. Kanehira, Y. Hayashi, S. Ohkouchi, N. Ikeda, Y. Sugimoto, R.A. Hogg. J. Cryst. Growth, 477 (1), 230 (2017)
- K. Watanabe, T. Akiyama, Y. Yokoyama, K. Takemasa, K. Nishi, Y. Tanaka, M. Sugawara, Y. Arakawa. J. Cryst. Growth, 378, 627 (2013)
- R.P. Mirin, K.L. Silverman, D.H. Christensen, A. Roshko. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct., 18 (3), 1510 (2000)
- T. Finke, V. Sichkovskyi, J.P. Reithmaier. J. Cryst. Growth, 517, 1 (2019)
- S. Ruvimov, P. Werner, K. Scheerschmidt, U. Gosele, J. Heydenreich, U. Richter, N.N. Ledentsov, M. Grundmann, D. Bimberg, V.M. Ustinov, A.Yu. Egorov, P.S. Kop'ev, Zh.I. Alferov. Phys. Rev. B, 51 (20), 14766 (1995)
- H. Sasakura, S. Kayamori, S. Adachi, S. Muto. J. Appl. Phys., 102 (1), 013515 (2007)
- L. Wang, A. Rastelli, O. G. Schmidt. J. Appl. Phys., 100 (6), 064313 (2006)
- Z.R. Wasilewski, S. Fafard, J.P. McCaffrey. J. Cryst. Growth, 201-202, 1131 (1999)
- J.M. Garci a, T. Mankad, P.O. Holtz, P.J. Wellman, P.M. Petroff. Appl. Phys. Lett., 72 (24), 3172 (1998)
- M.C. Lobl, S. Scholz, I. Sollner, J. Ritzmann, T. Denneulin, A. Kovacs, B.E. Kardyna, A.D. Wieck, A. Ludwig, R.J. Warburton. Commun. Phys., 2 (1), 93 (2019)
- J.H. Blokland, M. Bozkurt, J.M. Ulloa, D. Reuter, A.D. Wieck, P.M. Koenraad, P.C.M. Christianen, J.C. Maan. Appl. Phys. Lett., 94 (2), 023107 (2009)
- P. Podemski, M. Pieczarka, A. Marynski, J. Misiewicz, A. Loffler, S. Hofling, J.P. Reithmaier, S. Reitzenstein, G. Sek. Superlat. Microstruct., 93, 214 (2016)
- N.N. Ledentsov, V.A. Shchukin, M. Grundmann, N. Kirstaedter, J. Bohrer, O. Schmidt, D. Bimberg, V.M. Ustinov, A.Yu. Egorov, A.E. Zhukov, P.S. Kop'ev, S.V. Zaitsev, N.Yu. Gordeev, Zh.I. Alferov, A.I. Borovkov, A.O. Kosogo, S.S. Ruvimov, P. Werner, U. Gosele, J. Heydenreich. Phys. Rev. B, 54, 8743 (1996)
- S.A. Blokhin, A.M. Nadtochiy, A.A. Krasivichev, L.Ya. Karachinsky, A.P. Vasiliev, V.N. Nevedsky, M.V. Maksimov, G.E. Tsyrlin, A.D. Buravlev, N.A. Maleev, A.E. Zhukov, N.N. Lollipops, V.M. Ustinov. FTP, 47 (1), 87 (2013) (in Russian)
- V.I. Belyavsky, S.V. Shevtsov. FTP, 36 (7), 874 (2002). (in Russian)
- A. Schliwa, M. Winkelnkemper, D. Bimberg. Phys. Rev. B, 76 (20), 205324 (2007)
- M. Grundmann, D. Bimberg. Jpn. J. Appl. Phys., 36 (pt 1, No. 6B), 4181 (1997).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.