Kinetics of reversible phase transitions in Ge2Sb2Te5 thin films at femtosecond laser irradiation
Kolchin A. V. 1, Zabotnov S. V. 2, Shuleiko D. V.2,3, Lazarenko P. I.4, Glukhenkaya V. B.4, Kozyukhin S. A.4, Kashkarov P. K.2,5
1Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
2Department of Physics, Lomonosov Moscow State University, Moscow, Russia
3Big Data Storage and Analysis Center, Lomonosov Moscow State University, Moscow, Russia
4National Research University of Electronic Technology (MIET), Zelenograd, Russia
5National Research Center “Kurchatov Institute”, Moscow, Russia
Email: avkolchin432@gmail.com, zabotnov@physics.msu.ru, shuleyko.dmitriy@physics.msu.ru, aka.jum@gmail.com, Kapakycek2009@yandex.ru, sergkoz@igic.ras.ru, p.kashkarov@mail.ru

PDF
Femtosecond laser irradiation of amorphous Ge2Sb2Te5 thin films initiates reversible phase transitions. The amorphization and crystallization of Ge2Sb2Te5 thin films were experimentally and theoretically confirmed. Electron and lattice temperatures kinetics during laser pulse duration were evaluated by two-temperature models calculations and experimental data. The dynamical changing of optical properties have been taking into account. Temperatures and cooling rates, which are necessary to initiate phase transitions by IR laser pulses with subpicosecond duration. The observed results open perspectives for improvement of Ge2Sb2Te5 nanophotonical devices. Keywords: Ge2Sb2Te5 femtosecond laser technologies, Raman spectroscopy, phase transitions. DOI: 10.61011/EOS.2023.02.55774.10-23
  1. S.A. Kozyukhin, P.I. Lazarenko, A.I. Popov, I.L. Eremenko. Russ. Chem. Rev., 91 (9), RCR5033 (2022). DOI: 10.1070/RCR5033
  2. V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig. J. Appl. Phys., 89, 3168 (2001). DOI: 10.1063/1.1351868
  3. Y. Vorobyov, P. Lazarenko, A. Sherchenkov, N. Vishnyakov, A. Ermachikhin, S. Kozyukhin. J. Phys.: Condens. Matter., 32, 355401 (2020). DOI: 10.1088/1361-648X/ab8c8a
  4. J. Tominaga, T. Shima, P. Fons, R. Simpson, M. Kuwahara, A. Kolobov. Jpn. J. Appl. Phys., 48, 03A053 (2009). DOI: 10.1143/JJAP.48.03A053
  5. A.A. Sherchenkov, S.A. Kozyukhin, P.I. Lazarenko, A.V. Babich, N.A. Bogoslovskiy, I.V. Sagunova, E.N. Redichev. Semiconductors, 51, 146-152 (2017). DOI: 10.1134/S1063782617020191
  6. N.A. Bogoslovskiy, K.D. Tsendin. Semiconductors, 46, 559 (2012). DOI: 10.1134/S1063782612050065
  7. H. Wu, W. Han, X. Zhang. Materials, 15, 6760 (2022). DOI: 10.3390/ma15196760
  8. Y.H. Wang, F.R. Liu, W.Q. Li, T. Fan, J.F. Yang, Z.M. Wang, F. Liu, N.X. Sun. J. App. Phys., 122, 043104 (2017). DOI: 10.1063/1.4993451
  9. T. Kunkel, Y. Vorobyov, M. Smayev, P. Lazarenko, A. Romashkin, S. Kozyukhin. Materials Science in Semiconductor Processing, 139, 10350 (2022). DOI: 10.1016/j.mssp.2021.106350
  10. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao. J. Appl. Phys., 69, 2849 (1991). DOI: 10.1063/1.348620
  11. T. Kunkel, Y. Vorobyov, M. Smayev, P. Lazarenko, V. Veretennikov, V. Sigaev, S. Kozyukhin. J. Alloys and Compounds, 851, 156924 (2021). DOI: 10.1016/j.jallcom.2020.156924
  12. G.A. Martsinovsky, G.D. Shandybina, Yu.S. Dement'eva, R.V. Dyukin, S.V. Zabotnov, L.A. Golovan', P.K. Kashkarov. Semiconductors, 43, 1298 (2009). DOI: 10.1134/S106378260910008X
  13. P.Y. Yu, M. Cardona. Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2010). DOI: 10.1007/978-3-642-00710-1
  14. J.K. Chena, D.Y. Tzou, J.E. Beraun. Int. J. Mass Heat Transfer, 49, 307 (2006). DOI: 10.1016/j.ijheatmasstransfer.2005.06.022
  15. P.I. Lazarenko, Yu.V. Vorobyov, M.E. Fedyanina, A.A. Sherchenkov, S.A. Kozyukhin, A.O. Yakubov, A.V. Kukin, Yu.S. Sybina, I.V. Sagunova. Inorg. Mater. Appl. Res., 11, 330 (2020). DOI: 10.1134/S2075113320020227
  16. S. Liu, J. Wei, F. Gan. J. Appl. Phys., 110 (3), 033503 (2011). DOI: 10.1063/1.3614501
  17. L.E. Shelimova, O.G. Karpinskii, P.P. Konstantinov, M.A. Kretova, E.S. Avilov, V.S. Zemskov. Inorganic Materials, 37 (4), 342 (2001). DOI: 10.1023/A:1017519625907
  18. S.H. M/oller, E.H. Eriksen, P.L. T/onning, P.B. Jensen., J. Chevallier, P. Balling. Appl. Surf. Sci., 476, 221 (2019). DOI: 10.1016/j.apsusc.2019.01.070
  19. P. Nv emec, V. Nazabal, A. Moreac, J. Gutwirth, L. Benev s, M. Frumar. Materials Chemistry and Physics, 136, 935 (2012). DOI: 10.1016/j.matchemphys.2012.08.024
  20. Z. Xu, C. Chen, Z. Wang, K. Wu, H. Chong, H. Ye. RSC Advances, 8 (37), 21040 (2018). DOI: 10.1039/C8RA01382A
  21. K. Shportko, L. Revutska, O. Paiuk, J. Baran, A. Stronski, A. Gubanova, E. Venger. Optical Materials, 73, 489 (2017). DOI: 10.1016/j.optmat.2017.08.042
  22. S. Zabotnov, A. Kolchin, D. Shuleiko, D. Presnov, T. Kaminskaya, P. Lazarenko, V. Glukhenkaya, T. Kunkel, S. Kozyukhin, P. Kashkarov. Micro, 2 (1), 88 (2022). DOI: 10.3390/micro2010005
  23. W.Zhou, Z. Zhang, Q. Zhang, D. Qi, T. Xu, S. Dai, X. Shen. Micromachines, 12, 616 (2021). DOI: 10.3390/mi12060616
  24. J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, E. Varesi. J. Appl. Phys., 107, 044314 (2010). DOI: 10.1063/1.3284084
  25. A. Shamova, G. Shandybina, E. Yakovlev, A. Georgieva. Optical Quantum Electron., 49, 74 (2017). DOI: 10.1007/s11082-017-0911-0

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru