Исследование магнитоимпедансных свойств наночастиц CuO, полученных в плазме дугового разряда низкого давления
Министерство науки и высшего образования Российской Федерации, Государственное задание, ES-2021-0026
Ушаков А.В.
1, Федоров Л.Ю.
11Федеральный исследовательский центр Красноярский научный центр СO РАН, Красноярск, Россия
Email: ushackov@mail.ru, 1401-87@mail.ru
Поступила в редакцию: 3 мая 2023 г.
В окончательной редакции: 2 июня 2023 г.
Принята к печати: 6 июня 2023 г.
Выставление онлайн: 23 июля 2023 г.
Наночастицы CuO, полученные в плазме дугового разряда низкого давления с последующим отжигом в атмосфере кислорода при 500oC, были исследованы методом рентгеновской дифракции и просвечивающей электронной микроскопии. Обнаружено формирование наночастиц неправильной формы в диапазоне размеров 5-30 nm. Уточнение Ритвельда подтвердило образование моноклинной фазы CuO со средним размером кристаллитов ~21 nm. Исследованы температурные зависимости намагниченности и диэлектрической проницаемости наночастиц CuO. Они показывают антиферромагнитное поведение с температурой Нееля 230 K и частотно-зависимое дисперсионное поведение в диапазоне температур 100-200 K при индукции внешнего магнитного поля 0-1.3 T. Проанализирован механизм диэлектрической релаксации и обнаружено, что он следует аррениусовскому поведению. Показано, что прыжковая проводимость с переменной длиной прыжка более точно описывает транспорт заряда в наночастицах CuO. Магнитодиэлектрический отклик порядка 2.5 наблюдался на частоте 12 kHz при температуре 150 K в магнитном поле 1.3 T. Ключевые слова: вакуумная дуга, оксиды, наночастицы, магнитодиэлектрический эффект. DOI: 10.21883/JTF.2023.08.55980.110-23
- Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang. Progr. Mater. Sci., 60, 208 (2014). DOI: 10.1016/j.pmatsci.2013.09.003
- S. Steinhauer. Chemosensors, 9 (3), 51 (2021). DOI: 10.3390/chemosensors9030051
- A. Angi, D. Sanli, C. Erkey, O. Birer. Ultrasonics Sonochemistry, 21 (2), 854 (2014). DOI: 10.1016/j.ultsonch.2013.09.006
- A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O'Mullaned, K. Kalantar-zadeh. J. Mater. Chem. C, 2, 5247 (2014). DOI: 10.1039/C4TC00345D
- J.A. Spencer, A.L. Mock, A.G. Jacobs, M. Schubert, Y. Zhang, M.J. Tadjer. Appl. Phys. Rev., 9, 011315 (2022). DOI: 10.1063/5.0078037
- X. Wang, L. de'Medici, A.J. Millis. Phys. Rev. B, 83, 094501 (2011). DOI: 10.1103/PhysRevB.83.094501
- Ю.П. Сухоруков, Н.Н. Лошкарева, А.С. Москвин, В.Л. Арбузов, А.С. Овчинников, Н.М. Чеботаев, А.А. Самохвалов. ФТТ, 39 (12), 2141 (1997)
- J. Leitner, D. Sedmidubsky, O. Jankovsky. Materials, 12 (20), 3355 (2019). DOI: 10.3390/ma12203355
- Y. Zhu, Z. Zhuang, Z. Liu, Z. Guo, X. Huang. J. Electroanalytical Chem., 936, 117374 (2023). DOI: 10.1016/j.jelechem.2023.117374
- I.V. Karpov, A.V. Ushakov, V.G. Demin, E.A. Goncharova, A.A. Shaihadinov. JOM, 72, 3952 (2020). DOI: 10.1007/s11837-020-04221-5
- А.В. Ушаков, И.В. Карпов, Л.Ю. Федоров, Е.А. Гончарова, М.В. Брунгардт, В.Г. Демин. ЖТФ, 91 (12), 1986 (2021). DOI: 10.21883/JTF.2021.12.51764.157-21 [A.V. Ushakov, I.V. Karpov, L.Yu. Fedorov, E.A. Goncharova, M.V. Brungardt, V.G. Demin. Tech. Phys., 67 (15), 2410 (2021). DOI: 10.21883/TP.2022.15.55268.157-21]
- E. Batsaikhan, C.-H. Lee, H. Hsu, C.-M. Wu, J.-C. Peng, M.-H. Ma, S. Deleg, W.-H. Li. ACS Omega, 5 (8), 3849 (2020). DOI: 10.1021/acsomega.9b02913
- А.А. Самохвалов, Т.И. Арбузова, В.В. Осипов, Н.А. Виглин, С.В. Наумов, Н.И. Солин, Б.А. Гижевский, И.Б. Смоляк, В.А. Теплов, В.П. Пилюгин. ФТТ, 38 (11), 3277 (1996)
- А.В. Ушаков, И.В. Карпов, А.А. Лепешев, М.И. Петров, Л.Ю. Федоров. ФТТ, 57 (5), 903 (2015). [A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov, L.Yu. Fedorov. Phys. Solid State, 57 (5), 919 (2015). DOI: 10.1134/S1063783415050303]
- H.C.R. Bitra, A.V. Rao, K.S. Babu, G.N. Rao. Mater. Chem. Phys., 254, 123379 (2020). DOI: 10.1016/j.matchemphys.2020.123379
- Z. Wang, N. Qureshi, S. Yasin, A. Mukhin, E. Ressouche, S. Zherlitsyn, Y. Skourski, J. Geshev, V. Ivanov, M. Gospodinov, V. Skumryev. Nature Commun., 7, 10295 (2016). DOI: 10.1038/ncomms10295
- A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov. Vacuum, 133, 25 (2016). DOI: 10.1016/j.vacuum.2016.08.007
- Л.Ю. Федоров, И.В. Карпов, А.В. Ушаков, А.А. Лепешев. Перспективные материалы, 8, 60 (2017). [L.Yu. Fedorov, I.V. Karpov, A.V. Ushakov, A.A. Lepeshev. Inorgan. Mater.: Appl. Res., 9 (2), 323 (2018). DOI: 10.1134/S2075113318020107]
- H.M. Rietveld. J. Appl. Cryst., 2, 65 (1969)
- G. Doring, C. Sternemann, A. Kaprolat, A. Mattila, K. Hamalainen, W. Schulke. Phys. Rev. B, 70, 085115 (2004). DOI: 10.1103/PhysRevB.70.085115
- Т.И. Арбузова, С.В. Наумов, В.Л. Арбузов, К.В. Шальнов, А.Е. Ермаков, А.А. Мысик. ФТТ, 45 (2), 290 (2003)
- A.A. Lepeshev, N.A. Drokin, A.V. Ushakov, I.V. Karpov, L.Yu. Fedorov, E.P. Bachurina. J. Mater. Sci.: Mater. Electron., 29 (14), 12118 (2018). DOI: 10.1007/s10854-018-9319-2
- O.Z. Yanchevskii, O.I. V'yunov, A.G. Belous, L.L. Kovalenko. J. Alloys Compounds, 874, 159861 (2021). DOI: 10.1016/j.jallcom.2021.159861
- M.M. Ahmad, A. Alshoaibi, S.A. Ansari, T.S. Kayed, H.A. Khater, H.M. Kotb. Materials, 15 (9), 3173 (2022). DOI: 10.3390/ma15093173
- J. Wu, C.-W. Nan, Y. Lin, Y. Deng. Phys. Rev. Lett., 89 (21), 217601 (2002). DOI: 10.1103/PhysRevLett.89.217601
- L. Zhang, Z.-J. Tang. Phys. Rev. B, 70, 174306 (2004). DOI: 10.1103/PhysRevB.70.174306
- N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)
- S. Mukherjee, S. Chatterjee, S. Rayaprol, S.D. Kaushik, S. Bhattacharya, P.K. Jana. J. Appl. Phys., 119, 134103 (2016). DOI: 10.1063/1.4945318
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.