Physics of the Solid State
Volumes and Issues
Electrical conductivity and interface phenomena in thin-film heterostructures based on lithium niobate and lithium tantalate
Gudkov S. I. 1, Solnyshkin A. V. 1, Zhukov R. N. 2, Kiselev D. A. 2, Semenova E. M. 1, Belov A.N. 3
1Tver State University, Tver, Russia
2National University of Science and Technology MISiS, Moscow, Russia
3National Research University of Electronic Technology (MIET), Zelenograd, Russia
Email: becauseimaphysicist@yandex.ru, a.solnyshkin@mail.ru, rom_zhuk@mail.ru, dm.kiselev@misis.ru, semenova_e_m@mail.ru, nanointech@mail.ru

PDF
In this work, the electrophysical properties of metal-ferroelectric-semiconductor structures - Cu/LiNbO3/Si and Ag/LiTaO3/Si - with a ferroelectric layer thickness of 200 nm have been studied. The ferroelectric layers were deposited by RF magnetron sputtering. A topography study of thin film surface revealed a grain structure. The electrical conductivity mechanisms in Cu/LiNbO3/Si and Ag/LiTaO3/Si were considered. In a dependence of bias voltage value, there are a space charge-limited current, hopping conduction, and Schottky emission in Cu/LiNbO3/Si structures. For Ag/LiTaO3/Si structures, the space charge-limited current and hopping conduction were observed. An asymmetry of the current-voltage characteristics may indicate the presence of a potential barrier at the interface. For the studied structures, the value of the potential barrier was determined Keywords: metal-ferroelectric-semiconductor structures, thin films, lithium niobate, lithium tantalate, electrophysical properties, electrical conductivity, potential barrier.
  1. V.Ya. Shur. Lithium niobate and lithium tantalate-based piezoelectric materials. In: Advanced Piezoelectric Materials / Ed. Kenji Uchino. Woodhead Publishing, Cambridge (2010). P. 204. https://doi.org/10.1533/9781845699758.1.204
  2. A. Bartasyte, S. Margueron, T. Baron, S. Oliveri, P. Boulet. Adv. Mater. Interfaces 4, 8, 1600998 (2017). https://doi.org/10.1002/admi.201600998
  3. A.V. Yatsenko, M.N. Palatnikov, N.V. Sidorov, A.S. Pritulenko, S.V. Evdokimov. Phys. Solid State 57, 8, 1574 (2015). https://doi.org/10.1134/S1063783415050339
  4. A.R. Damodaran, J.C. Agar, S. Pandya, Z. Chen, L. Dedon, R. Xu, B. Apgar, S. Saremi, L.W. Martin. J. Phys.: Condens. Matter 28, 26, 263001 (2016). https://doi.org/10.1088/0953-8984/28/26/263001
  5. M.P. Sumets, V.A. Dybov, V.M. Ievlev. Inorg. Mater. 53, 13, 1361 (2017). https://doi.org/10.1134/S0020168517130015
  6. V. Stenger, M. Shnider, S. Sriram, D. Dooley, M. Stout. Proc. SPIE 8261, Terahertz Technology and Applications V, 82610Q (2012). https://doi.org/10.1117/12.908523
  7. Z. Xi, J. Ruan, C. Li, C. Zheng, Z. Wen, J. Dai, A. Li, D. Wu. Nature Commun. 8, 1, 15217 (2017). https://doi.org/10.1038/ncomms15217
  8. S.I. Gudkov, K.D. Baklanova, M.V. Kamenshchikov, A.V. Solnyshkin, A.N. Belov. Phys. Solid State 60, 4, 743 (2018). https://doi.org/10.1134/S106378341804011X
  9. S.I. Gudkov, A.V. Solnyshkin, D.A. Kiselev, A.N. Belov. Cer\^amica 66, 379, 291 (2020). https://doi.org/10.1590/0366-69132020663792885
  10. B.L. Yang, P.T. Lai, H. Wong. Microelectron. Reliab. 44, 5, 709 (2004). https://doi.org/10.1016/j.microrel.2004.01.013
  11. F.-C. Chiu. Adv. Mater. Sci. Eng. 2014, 578168 (2014). https://doi.org/10.1155/2014/578168
  12. V. Mikhelashvili, G. Eisenstein. J. Appl. Phys. 89, 6, 3256 (2001). https://doi.org/10.1063/1.1349860
  13. E. Lim, R. Ismail. Electronics 4, 3, 586 (2015). https://doi.org/10.3390/electronics4030586
  14. V. Joshi, D. Roy, M.L. Mecartney. Integr. Ferroelectr. 6, 1-4, 321 (1995). https://doi.org/10.1080/10584589508019375
  15. N. Easwaran, C. Balasubramanian, S.A.K. Narayandass, D. Mangalaraj. Phys. Status Solidi A 129, 2, 443 (1992). https://doi.org/10.1002/pssa.2211290214
  16. F.-C. Chiu, H.-W. Chou, J.Y. Lee. J. Appl. Phys. 97, 10, 103503 (2005). https://doi.org/10.1063/1.1896435
  17. D.S. Smith, H.D. Riccius, R.P. Edwin. Opt. Commun. 17, 3, 332 (1976). https://doi.org/10.1016/0030-4018(76)90273-X
  18. D.F. Nelson, R.M. Mikulyak. J. Appl. Phys. 45, 8, 3688 (1974). https://doi.org/10.1063/1.1663839
  19. W. Brutting, S. Berleb, A.G. Muckl. Synth. Met. 122, 1, 99 (2001). https://doi.org/10.1016/S0379-6779(00)01342-4
  20. Y. Gu, L.J. Lauhon. Appl. Phys. Lett. 89, 14, 143102 (2006). https://doi.org/10.1063/1.2358316
  21. V.G. Bozhkov, N.A. Torkhov, A.V. Shmargunov. J. Appl. Phys. 109, 7, 073714 (2011). https://doi.org/10.1063/1.3561372
  22. V. Joshi, D. Roy, M.L. Mecartney. Appl. Phys. Lett. 63, 10, 1331 (1993). https://doi.org/10.1063/1.109721
  23. E.H. Rhoderick. Kontakt metall-poluprovodnik / eds. G.V. Stepanov, Radio i svyaz, M., (1982), 208 p. (in Russian)
  24. Z. Caldi ran, A.R. Deniz, S. Aydogan, A. Yesildag, D. Ekinci. Superlattices Microstruct. 56, 45 (2013). https://doi.org/10.1016/j.spmi.2012.12.004
  25. B. Akkal, Z. Benamara, B. Gruzza, L. Bideux. Vacuum 57, 2, 219 (2000). https://doi.org/10.1016/S0042-207X(00)00131-7
  26. D.Y. Wang. J. Am. Ceram. Soc. 77, 4, 897 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07245.x
  27. J. Yang, J. Long, L. Yang. Phys. B: Condens. Matter 425, 12 (2013). https://doi.org/10.1016/j.physb.2013.05.017
  28. S.K. Cheung, N.W. Cheung. Appl. Phys. Lett. 49, 2, 85 (1986). https://doi.org/10.1063/1.97359
  29. P. Durmus, S. Altindal. Int. J. Mod. Phys. B 31, 27, 1750197 (2017). https://doi.org/10.1142/S0217979217501971
  30. A. Buyukbas-Ulusan, S. Alti ndal-Yeriskin, A. Tataroglu. J. Mater. Sci.: Mater. Electron. 29, 19, 16740 (2018). https://doi.org/10.1007/s10854-018-9767-8
  31. H. Norde. J. Appl. Phys. 50, 7, 5052 (1979). https://doi.org/10.1063/1.325607
  32. K.E. Bohlin. J. Appl. Phys. 60, 3, 1223 (1986). https://doi.org/10.1063/1.337372
  33. A.A. Esin, A.R. Akhmatkhanov, V.Ya. Shur. Ferroelectrics 496, 1, 102 (2016). https://doi.org/10.1080/00150193.2016.1157438
  34. A. El-Bachiri, F. Bennani, M. Bousselamti. Spectrosc. Lett. 47, 5, 374 (2014). https://doi.org/10.1080/00387010.2013.857356

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru