XXVII International Symposium Nanophysics and Nanoelectronics", Nizhny Novgorod, March 13-16 March 2023 Charged vacancies formation in AlAs anionic sublattice
Shamirzaev T. S. 1,2
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia
Email: sha_tim@mail.ru
The vacancy formation dynamics in doped semiconductor heterostructures with quantum dots (QDs) formed in the AlAs anionic sublattice has been studied. A theoretical model that describes the effect of doping on the vacancy generation dynamics is constructed. It is shown that the generation of positively charged arsenic vacancies is more probable than the generation of neutral ones at high hole concentrations. On the other hand, at high electron concentrations, the formation of neutral arsenic vacancies is more efficient than that positively charged ones. It has been experimentally revealed that the vacancy-stimulated high-temperature diffusion of antimony is enhanced (suppressed) in p-(n-)doped heterostructures with Al(Sb,As)/AlAs QDs. Keywords: charged vacancies, quantum dots, atomic diffusion. DOI: 10.61011/SC.2023.04.56417.01k
- Richard J.D. Tilley. Defects in solids (John Wiley \& Sons, Ltd, 2008)
- Diffusion Processes in Advanced Technological Materials edited by Devendra Gupta (Springer Verlag, N. Y., 2005)
- B. Tuck. J. Phys. D: Appl. Phys., 18, 557 (1985)
- Shambhu Sharan Kumar Sinha, Subindu Kumar, Mukul Kumar Das. Appl. Phys. A, 125, 774 (2019)
- T.S. Shamirzaev, A.K. Kalagin, A.I. Toropov, A.K. Gutakovskii, K.S. Zhuravlev, Phys. Status Solidi C, 3 (11), 3932 (2006)
- M.Yu. Petrov, I.V. Ignatiev, S.V. Poltavtsev, A. Greilich, A. Bauschulte, D.R. Yakovlev, M. Bayer. Phys. Rev. B, 78, 045315 (2008)
- S.O. Hruszkewycz, S. Maddali, C.P. Anderson, W. Cha, K.C. Miao, M.J. Highland, A. Ulvestad, D.D. Awschalom, F.J. Heremans. Phys. Rev. Mater., 2, 086001 (2018)
- T.S. Shamirzaev. FTP, 45, 97 (2011). (in Russian)
- D.S. Abramkin, T.S. Shamirzaev. Fiz. Tekh. Poluprovodn., 53, 710 (2019). (in Russian)
- T.S. Shamirzaev, J. Debus, D.S. Abramkin, D. Dunker, D.R. Yakovlev, D.V. Dmitriev, A.K. Gutakovskii, L.S. Braginsky, K.S. Zhuravlev, M. Bayer. Phys. Rev. B, 84, 155318 (2011)
- E.G. Seebauer, M.C. Kratzer. Mater. Sci. Eng. R, 55, 57 (2006)
- V.L. Vinetsky, G.A. Kholodar. Statisticheskoye vzaimodeystviye elektronov i defektov v poluprovodnikakh (Kiev, Nauk. Dumka, 1969). (In Russian)
- T.S. Shamirzaev, V.V. Atuchin, V.E. Zhilitskiy, A.Y. Gornov. Nanomaterials, 13, 308 (2023)
- C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer. Rev. Mod. Phys., 86, 253 (2014)
- J. Gebauer, M. Lausmann, F. Redmann, R. Krause-Rehberg, H.S. Leipner, E.R. Weber, P. Ebert. Phys. Rev. B, 67, 235207 (2003)
- H.S. Djie, O. Gunawan, D.-N. Wang, B.S. Ooi, J.C.M. Hwang. Phys. Rev. B, 73, 155324 (2006)
- J-L. Rouviere, Y. Kim, J. Cunningham, J.A. Rentschler, A. Bourret, A. Ourmazd. Phys. Rev. Lett., 68, 2798 (1992)
- M. Feiginov J. Infrared Millim. Terahertz Waves, 40, 365 (2019)
- Saad Muttlak, Omar Abdulwahid, James Sexton, Michael J. Kelly, M. Missous. IEEE J. Electron Dev. Soc., 6, 254 (2018)
- Y. Alahmadi, W.P. LiKam. Semicond. Sci. Technol., 34, 025010 (2019)
- P. Lever, H.H. Tan, C. Jagadish. J. Appl. Phys., 96, 7544 (2004)
- I. McKerracher, L. Fu, H.H. Tan, C. Jagadish. J. Appl. Phys., 112, 113511 (2012)
- D.T.J. Hurle. J. Appl. Phys., 85, 6957 (1999)
- T.S. Shamirzaev, A.L. Sokolov, K.S. Zhuravlev, A.Yu. Kobitski, H.P. Wagner, D.R.T. Zahn. Fiz. Tekh. Poluprovodn., 36, 87 (2002). (in Russian)
- J.H. Crawford, jr., L.M. Slifkin (eds). Point defects in solids. In Semiconductors and Molecular Crystals (Plenum Press, N. Y., USA, 1975) v. 2
- A.F. Wright, N.A. Modine. J. Appl. Phys., 120, 215705 (2016)
- G.A. Baraff, M. Schliiter. Phys. Rev. Lett., 55, 1327 (1985)
- W. Walukiewicz. Appl. Phys. Lett., 54, 2094 (1989)
- M.J. Puska. J. Phys.: Condens. Matter., 1, 7347 (1989)
- M. Grundmann. The Physics of Semiconductors (Springer Verlag, Berlin-Heidelberg, Germany, 2006)
- I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. J. Appl. Phys., 89, 5815 (2001)
- H.A. Tahini, A. Chroneos, S. Murphy, U. Schwingenschlogl, R.W. Grimes. J. Appl. Phys., 114, 063517 (2013)
- B. Ullrich, M. Bhowmick, H. Xi. AIP Advances, 7, 045109 (2017)
- P. Mitev, S. Seshadri, L.J. Guido, D.T. Schaafsma, D.H. Christensen. Appl. Phys. Lett., 73, 3718 (1998)
- M. Bockstedte, M. Schefer. Z. Phys. Chem., 200, 195, (1997)
- O.M. Khreis, W.P. Gillin, K.P. Homewood. Phys. Rev. B, 55, 15813 (1997)
- D.S. Abramkin, K.M. Rumenin, A.K. Bakarov, D.A. Kolotovkina, A.K. Gutakovsky, T.S. Shamirzaev. Pis'ma ZHETF, 103 (11), 785 (2016)
- T.S. Shamirzaev, D.S. Abramkin, D.V. Dmitriev, A.K. Gutakovskii. Appl. Phys. Lett., 97, 263102 (2010)
- T.S. Shamirzaev, A.M. Gilinsky, A.K. Kalagin, A.I. Toropov, A.K. Gutakovskii, K.S. Zhuravlev. Semicond. Sci. Technol., 21, 527 (2006)
- T.S. Shamirzaev, D.R. Yakovlev, N.E. Kopteva, D. Kudlacik, M.M. Glazov, A.G. Krechetov, A.K. Gutakovskii, M. Bayer. Phys. Rev. B, 106, 075407 (2022)
- T.S. Shamirzaev, D.R. Yakovlev, A.K. Bakarov, N.E. Kopteva, D. Kudlacik, A.K. Gutakovskii, M. Bayer. Phys. Rev. B, 102, 165423 (2020).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.