The grazing incidence reflection coefficient measurement with the usage of single channel scheme
Antsiferov P. S.1, Dorokhin L. A.1, Makarova V. M.1,2
1Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
2National Research University Higher School of Economics, Moscow, Russia
Email: ants@isan.troitsk.ru
The measurement of the grazing incidence reflection coefficient is one of the main methods of the evaluation of materials' optical constants in extreme ultraviolet spectral range. The present work describes a single channel method of such measurement, where the direct and reflected radiation, dispersed in a grazing incidence spectrometer, has been detected simultaneously by means of CCD matrix. The algorithm of the spectrograms processing, based upon the usage of the spectral modulation function, has been proposed. The elaborated method has been applied to the silicon reflection coefficient measurements at 5o grazing incidence in the spectral range 8-25 nm. The Quasi-Flat Field spectrometer and fast capillary discharge have been used in the experiment. Keywords: Extreme ultraviolet, grazing incidence, reflection coefficient, capillary discharge.
- V.Y. Banine, K.N. Koshelev, G.H.P.M. Swinkels. J. Phys. D: Appl. Phys., 44 (25), 253001 (2011). DOI: 10.1088/0022-3727/44/25/253001
- F. Schafers, P. Bischoff, F. Eggenstein,A. Erko, A. Gaupp, S. K?nstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, T. Zeschke. J. Synchrotron Radiat., 23 (1), 67--77 (2016). DOI: 10.1107/s1600577515020615
- B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Muller, M. Richter, F. Scholze, R. Thornagel, G. Ulm. Phys. Status Solidi B, 246 (7), 1415--1434 (2009). DOI: 10.1002/pssb.200945162
- J.H. Underwood, E.M. Gullikson. J. Electron Spectrosc. Relat. Phenom., 92 (1-3), 265--272 (1998). DOI: 10.1016/s0368-2048(98)00134-0
- R. Ciesielski, Q. Saadeh, V. Philipsen, K. Opsomer, J.P. Soulie, M. Wu, P. Naujok, R. van de Kruijs, C. Detavernier, M. Kolbe, F. Scholze, V. Soltwisch. Appl. Opt., 61 (8), 2060--2078 (2022). DOI: 10.1364/AO.44715
- M. Banyay, L. Juschkin. Appl. Phys. Lett., 94 (6), 063507 (2009). DOI: 10.1063/1.3079394
- K. Bergmann, O. Rosier, C. Metzmacher. Rev. Sci. Instrum., 76 (4), 043104 (2005). DOI: 10.1063/1.1884387
- V.O. Dogadin, S.Yu. Zuev, N.N. Salashchenko, N.I. Chkhalo, A.V. Shcherbakov. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 9 (4), 726--734 (2015). DOI: 10.1134/s1027451015040072
- S.A. Garakhin, I.G. Zabrodin, S.Y. Zuev, I.A. Kas'kov, A.Y. Lopatin, A.N. Nechay, V.N. Polkovnikov, N.N. Salashchenko, N.N. Tsybin, N.I. Chkhalo, M.V. Svechnikov. Quantum Electron., 47 (4), 385--392 (2017). DOI: 10.1070/qel16300
- D.B. Abramenko, P.S. Antsiferov, L.A. Dorokhin, V.V. Medvedev, Y.V. Sidelnikov, N.I. Chkhalo, V.N. Polkovnikov. Opt. Lett., 44 (20), 4949 (2019). DOI: 10.1364/ol.44.004949
- P.S. Antsiferov, L.A. Dorokhin, P.V. Krainov. Rev. Sci. Instrum., 87 (5), 053106 (2016). DOI: 10.1063/1.4945654
- P.S. Antsiferov, L.A. Dorokhin. J. Appl. Phys., 113 (24), 243303 (2013). DOI: 10.1063/1.4811714
- NIST Chemistry WebBook [Electronic source]. URL: https://webbook.nist.gov/chemistry/
- CXRO X-Ray Interactions With Matter [Electronic source]. URL: https://henke.lbl.gov/optical_constants/
- Greateyes [Electronic source]. URL: https://www.greateyes.de/projects/greateyes/static/custom/file/ greateyes_InVacuum_Camera_Series_Rev03.pdf
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.