Sokolova Z. N.
1, Asryan L. V.
21Ioffe Institute, St. Petersburg, Russia
2Virginia Polytechnic Institute and State University, Blacksburg, USA
Email: zina.sokolova@mail.ioffe.ru, asryan@vt.edu
A stability analysis of two modes of generation in semiconductor quantum well lasers is performed. These modes correspond to two solutions of the rate equations obtained by taking into account the internal optical loss that depends on the density of charge carriers injected into the laser waveguide region and, hence, on the injection current. It is shown that, in contrast to the first ("conventional") mode of generation, which is always stable and hence observable, the second ("additional") mode, which is entirely due to the internal loss that depends on the carrier density, is unstable and hence cannot be observed under the steady-state conditions in the laser structure considered in this work. Keywords: semiconductor lasers with low-dimensional active region, internal optical loss, linear analysis of stability.
- Zh.I. Alferov, V.M. Andreev, D.Z. Garbuzov, Yu.V. Zhilyaev, E.P. Morozov, E.L. Portnoi, V.G. Trofim. Sov. Phys. Semicond., 4, 1573 (1970)
- R. Dingle, C.H. Henry. U.S. Patent No. 3982207 (1976)
- R.D. Dupuis, P.D. Dapkus, N. Holonyak, E.A. Rezek, R. Chin. Appl. Phys. Lett., 32, 295 (1978)
- W.T. Tsang. Appl. Phys. Lett., 40, 217 (1982)
- P.G. Yeliseyev. Vvedeniye v fiziku inzhektsionnykh lazerov (M., Nauka, 1983). (in Russian)
- Zh.I. Alferov, D.Z. Garbuzov, A.V. Ovchinnikov, I.S. Tarasov, V.P. Evtikhiev, A.B. Nivin, A.E. Svelokuzov. Pis'ma ZhTF, 11, 1157 (1985). (in Russian)
- Zh.I. Alferov, A.I. Vasil'ev, S.V. Ivanov, P.S. Kop'ev, N.N. Ledentsov, M.E. Lutsenko, B.Ya. Mel'tser, V.M. Ustinov. Sov. Techn. Phys. Lett., 14, 782 (1988)
- D.Z. Garbuzov, A.V. Ovchinnikov, N.A. Pikhtin, Z.N. Sokolova, I.S. Tarasov, V.B. Khalfin. Sov. Phys. Semicond., 25, 560 (1991)
- Quantum Well Lasers, ed. by P.S. Zory, jr. (Academic, Boston, 1993)
- A.Y. Egorov, A.E. Zhukov, P.S. Kop'ev, N.N. Ledentsov, M.V. Maksimov, V.M. Ustinov. Semiconductors, 28, 809 (1994)
- L.V. Asryan, R.A. Suris. Semicond. Sci. Technol., 11 (4), 554 (1996)
- L.J. Mawst, A. Bhattacharya, J. Lopez, D. Botez, D.Z. Garbuzov, L. DeMarco, J.C. Connolly, M. Jansen, F. Fang, R.F. Nabiev. Appl. Phys. Lett., 69, 1532 (1996)
- R.F. Kazarinov, G.E. Shtengel. J. Lightwave Technol., 15, 2284 (1997)
- Semiconductor Lasers, ed. by E. Kapon (Academic, San Diego, 1999)
- L.V. Asryan, N.A. Gun'ko, A.S. Polkovnikov, G.G. Zegrya, R.A. Suris, P.-K. Lau, T. Makino. Semicond. Sci. Technol., 15 (12), 1131 (2000)
- Zh.I. Alferov. Rev. Mod. Phys., 73, 767 (2001)
- H. Kroemer. Rev. Mod. Phys., 73, 783 (2001)
- L.V. Asryan, R.A. Suris. Semiconductors, 38 (1), 1 (2004)
- L.V. Asryan. Quant. Electron., 35 (12), 1117 (2005)
- V.V. Bezotosnyi, V.V. Vasil'eva, D.A. Vinokurov, V.A. Kapitonov, O.N. Krokhin, A.Yu. Leshko, A.V. Lyutetskii, A.V. Murashova, T.A. Nalet, D.N. Nikolaev, N.A. Pikhtin, Yu.M. Popov, S.O. Slipchenko, A.L. Stankevich, N.V. Fetisova, V.V. Shamakhov, I.S. Tarasov. Semiconductors, 42, 350 (2008)
- D.-S. Han, L.V. Asryan. Appl. Phys. Lett., 92 (25), 251113 (2008)
- S.L. Chuang. Physics of Photonic Devices, 2nd ed (New York, NY, USA: Wiley, 2009)
- L.V. Asryan, N.V. Kryzhanovskaya, M.V. Maximov, A.Yu. Egorov, A.E. Zhukov. Semicond. Sci. Technol., 26 (5), 055025 (2011)
- M.T. Crowley, N.A. Naderi, H. Su, F. Grillot, L.F. Lester. Semicond. Semimet., 86, 371 (2012). (San Diego, CA, USA: Elsevier). DOI: 10.1016/B978-0-12-391066-0.00010-1
- C. Wang, B. Lingnau, K. Ludge, J. Even, F. Grillot. IEEE J. Quant. Electron., 50, 723 (2014)
- K. Nishi, K. Takemasa, M. Sugawara, Y. Arakawa. IEEE J. Select. Top. Quant. Electron., 23, 1901007 (2017)
- V. Mikhelashvili, O. Eyal, I. Khanonkin, S. Banyoudeh, V. Sichkovskyi, J.P. Reithmaier, G. Eisenstein. J. Appl. Phys., 124, 054501 (2018)
- A.E. Zhukov, A.M. Nadtochiy, N.V. Kryzhanovskaya, Yu.M. Shernyakov, N.Yu. Gordeev, A.A. Serin, S.A. Mintairov, N A. Kalyuzhny, A.S. Payusov, G.O. Kornyshov, M.V. Maksimov, Y. Wang. FTP, 56 (9), 922 (2022). (in Russian)
- E. Alkhazraji, W.W. Chow, F. Grillot, J.E. Bowers, Y. Wan. Light: Sci. Appl., 12, 162 (2023)
- L.V. Asryan, S. Luryi. Appl. Phys. Lett., 83 (26), 5368 (2003)
- L.V. Asryan, S. Luryi. IEEE J. Quant. Electron., 40 (7), 833 (2004)
- L.V. Asryan. Appl. Phys. Lett., 88 (7), 073107 (2006)
- L.V. Asryan. J. Nanophoton., 3, 031601 (2009)
- Z.N. Sokolova, I.S. Tarasov, L.V. Asryan. Semiconductors, 45 (11), 1494 (2011)
- L.V. Asryan, S. Luryi, R.A. Suris. Appl. Phys. Lett., 81 (12), 2154 (2002)
- L.V. Asryan, S. Luryi, R.A. Suris. IEEE J. Quant. Electron., 39 (3), 404 (2003)
- L.V. Asryan, Z.N. Sokolova. J. Appl. Phys., 115 (2), 023107 (2014)
- Z.N. Sokolova, N.A. Pikhtin, I.S. Tarasov, L.V. Asryan. J. Phys.: Conf. Ser., 740, 012002 (2016). DOI: 10.1088/1742-6596/740/1/012002
- L. Jiang, L.V. Asryan. IEEE Photon. Technol. Lett., 18 (24), 2611 (2006)
- Y. Wu, L. Jiang, L.V. Asryan. J. Appl. Phys., 118 (18), 183107 (2015)
- Z.N. Sokolova, N.A. Pikhtin, L.V. Asryan. J. Lightwave Technol., 36 (11), 2295 (2018). DOI: 10.1109/JLT.2018.2806942
- Z.N. Sokolova, N. A. Pikhtin, L.V. Asryan. Proc. 18th Int. Conf. on Laser Optics "ICLO 2018" (St. Petersburg, Russia, June 4-8, 2018. Paper no. ThR3-p31, p. 169)
- Z.N. Sokolova, N.A. Pikhtin, L.V. Asryan. Electron. Lett., 55 (9), 550 (2019). DOI: 10.1049/el.2019.0225
- Z.N. Sokolova, N.A. Pikhtin, S.O. Slipchenko, L.V. Asryan. Proc. SPIE, 11301, 113010D (2020). (Novel In-Plane Semiconductor Lasers XIX 2020; San Francisco, USA; February 3-6, 2020). DOI: 10.1117/12.2546974
- Z.N. Sokolova, N.A. Pikhtin, S.O. Slipchenko, L.V. Asryan. 8th Int. School and Conf. "Saint Petersburg Open 2021" on Optoelectronics, Photonics, Engineering and Nanostructures, SPb OPEN 2021. J. Phys.: Conf. Ser., 2086, 012076 (2021). DOI:10.1088/1742-6596/2086/1/012076
- L.V. Asryan, R.A. Suris. Appl. Phys. Lett., 96 (22), 221112 (2010)
- L.V. Asryan, R.A. Suris. Proc. SPIE, 7610, 76100R (2010).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.