High-current low-voltage switches for nanosecond pulse durations based on thyristor (Al)GaAs/GaAs homo- and heterostructures
Slipchenko S. O.
1, Podoskin A. A.1, Shushkanov I. V.1, Krychkov V. A.1, Rizaev A. E.1, Kondratov M. I.1, Grishin A. E.1, Pikhtin N. A.1, Bagaev T. A.1,2, Svetogorov V. N.2, Ladugin M. A.2, Marmalyuk A. A.2, Simakov V. A.2
1Ioffe Institute, St. Petersburg, Russia
2“Polyus” Research Institute of M.F. Stelmakh Joint Stock Company, Moscow, Russia
Email: SergHPL@mail.ioffe.ru
A series of low-voltage thyristor current switches based on (Al)GaAs/GaAs homo- and heterostructures with a volume charge region formed in the lightly doped p-GaAs base layer have been developed. The transient processes characteristics in pulse generation mode of nanosecond duration have been studied. It has been shown that the use of a wide-bandgap barrier based on AlGaAs at the n-emitter/p-base junction allows reducing the minimum control current amplitude from 30 to 3 mA, and the turn-on delay time can be shortened to 6 ns. For the developed thyristor switches, a minimum transition time of 3.7-3.9 ns was demonstrated when operating in a circuit with a 1 nF capacitive load. In a circuit with a nominal 1 Ohm resistive load, the thyristor switches provided a peak current of 17.5 A with a pulse duration of 3.7 ns. Keywords: High-current, switch, nanosecond pulse duration, thyristor, heterostructure.
- A. Klehr, A. Liero, H. Christopher, H. Wenzel, A. Maab dorf, P. Della Casa, J. Fricke, A. Ginolas, A. Knigge. Semicond. Sci. Technol., 35, 065016 (2020). DOI: 10.1088/1361-6641/ab8397
- N. Ammouri, H. Christopher, J. Fricke, A. Ginolas, A. Liero, A. Maab dorf, H. Wenzel, A. Knigge. Electron. Lett., 59, e12680 (2023). DOI: 10.1049/ell2.12680
- I.A. Prudaev, S.N. Vainshtein, M.G. Verkholetov, V.L. Oleinik, V.V. Kopyev. IEEE Trans. Electron Dev., 68, 57 (2020). DOI: 10.1109/TED.2020.3039213
- S. Vainshtein, G. Duan, T. Rahkonen, Z. Taylor, V. Zemlyakov, V. Egorkin, T. Skotnicki, W. Knap. Results Phys., 19, 103509 (2020). DOI: 10.1016/j.rinp.2020.103509
- S. Vainshtein, V. Zemlyakov, V. Egorkin, A. Maslevtsov, A. Filimonov. IEEE Trans. Power Electron., 34, 3689 (2018). DOI: 10.1109/TPEL.2018.2853563
- S.O. Slipchenko, A.A. Podoskin, O.S. Soboleva, N.A. Pikhtin, T.A. Bagaev, M.A. Ladugin, A.A. Marmalyuk, V.A. Simakov, I.S. Tarasov. J. Appl. Phys., 121, 054502 (2017). DOI: 10.1063/1.4975411
- S.O. Slipchenko, A.A. Podoskin, O.S. Soboleva, N.A. Pikhtin, T.A. Bagaev, M.A. Ladugin, A.A. Marmalyuk, V.A. Simakov, I.S. Tarasov. Opt. Express, 24, 16500 (2016). DOI: 10.1364/OE.24.016500
- S.O. Slipchenko, A.A. Podoskin, O.S. Soboleva, D.A. Veselov, V.V. Zolotarev, N.A. Pikhtin, T.A. Bagaev, M.A. Ladugin, A.A. Marmalyuk, V.A. Simakov, I.S. Tarasov. IEEE Trans. Electron Dev., 63, 3154 (2016). DOI: 10.1109/TED.2016.2582700
- O.S. Soboleva, V.S. Golovin, V.S. Yuferev, P.S. Gavrina, N.A. Pikhtin, S.O. Slipchenko, A.A. Podoskin. Semiconductors, 54, 575 (2020). DOI: 10.1134/S1063782620050140
- S.O. Slipchenko, A.A. Podoskin, V.S. Golovin, M.G. Rastegaeva, N.V. Voronkova, N.A. Pikhtin, T.A. Bagaev, M.A. Ladugin, A.A. Marmalyuk, V.A. Simakov. IEEE Phot. Techn. Lett., 33 (1), 11 (2020). DOI: 10.1109/LPT.2020.3040026
- S.O. Slipchenko, A.A. Podoskin, V.V. Zolotarev, L.S. Vavilova, A.Yu. Leshko, M.G. Rastegaeva, I.V. Miroshnikov, I.S. Shashkin, N.A. Pikhtin, T.A. Bagaev, M.A. Ladugin, A.A. Padalitsa, A.A. Marmalyuk, V.A. Simakov. Bull. Lebedev Phys. Inst., 50, S527 (2023). DOI: 10.3103/S1068335623170141
- S. Slipchenko, A. Podoskin, O. Soboleva, N. Pikhtin, I. Tarasov, V. Yuferev. Proc. Physics and Simulation of Optoelectronic Devices XXIV (SPIE OPTO, San Francisco, California, US, 2016) 97420I. DOI: 10.1117/12.2212583
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.