Hydrogels with controlled fluorescent properties based on quantum dots and diamine derivatives of polyethylene glycol
Gerasimovich E. S. 1, Knysh A. A.1, Samokhvalov P. S. 1, Sukhanova A.V.2, Nabiev I. R.1,2
1Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
2Laboratoire de Recherche en Nanosciences, Universite de Reims Champagne-Ardenne, Reims, France
Email: ewgenia-gerasimowitch@yandex.ru, knyshkikai@mail.ru, p.samokhvalov@gmail.com

PDF
Hydrogels are three-dimensional hydrophilic polymer structures obtained by chemical cross-linking or physical binding. Fluorescent hydrogels based on semiconductor nanocrystals or quantum dots (QDs) are of great interest due to their potential for bioanalytical, biosensor, and microfluidic applications. In the present study an approach to obtaining fluorescent gels with the use of a heterobifunctional cross-linker from water-soluble CdSe/ZnS (core/shell) QDs with the surface functionalized with cysteine and diamine derivatives of polyethylene glycol (PEG) of different lengths has been developed. The structure of the obtained gels was characterized using light, fluorescence, and scanning electron microscopi in comparison with gels obtained by addition of divalent cations. Comparative analysis of the spectral characteristics and fluorescence quantum yield of the obtained gel samples of different structures and morphologies was carried out. It was found that the porosity and optical properties of the obtained gels can be controlled by selecting PEG linkers of different lengths used for chemical gelation. Keywords: Fluorescent hydrogels, nanocrystals, quantum dots.
  1. X. Geng, D. Liu, C.C. Hewa-Rahinduwage, S.L. Brock, L. Luo. Acc. Chem. Res., 56 (9), 1087 (2023). DOI: 10.1021/acs.accounts.3c00042
  2. C. Sun, X. Shen, Y. Zhang, Y. Wang, X. Chen, C. Ji, H. Shen, H. Shi, Y. Wang, W.W. Yu. Nanotechnology, 28 (36), 365601 (2017). DOI: 10.1088/1361-6528/aa7c86
  3. Z. Li, W. Xu, Y. Wang, B.R. Shah, C. Zhang, Y. Chen, Y. Li, B. Li. Carbohydr. Polym., 121, 477 (2015). DOI: 10.1016/j.carbpol.2014.12.016
  4. I. U. Arachchige, S.L. Brock. Acc. Chem. Res., 40 (9), 801 (2007). DOI: 10.1021/ar600028s
  5. J. Song, M.H. Rizvi, B.B. Lynch, J. Ilavsky, D. Mankus, J.B. Tracy, G.H. McKinley, N. Holten-Andersen. ACS Nano, 14 (12), 17018 (2020). DOI: 10.1021/acsnano.0c06389
  6. V. Lesnyak, S.V. Voitekhovich, P.N. Gaponik, N. Gaponik, A. Eychmuller. ACS Nano, 4 (7), 4090 (2010). DOI: 10.1021/nn100563c
  7. M.N. Dominguez, M.P. Howard, J.M. Maier, S.A. Valenzuela, Z.M. Sherman, J.F. Reuther, L.C. Reimnitz, J. Kang, S.H. Cho, S.L. Gibbs, A.K. Menta, D.L. Zhuang, A. van der Stok, S.J. Kline, E.V. Anslyn, T.M. Truskett, D.J. Milliron. Chem. Mater., 32 (23), 10235 (2020). DOI: 10.1021/acs.chemmater.0c04151
  8. V. Sayevich, B. Cai, A. Benad, D. Haubold, L. Sonntag, N. Gaponik, V. Lesnyak, A. Eychmuller. Angew. Chemie - Int. Ed., 55 (21), 6334 (2016). DOI: 10.1002/anie.201600094
  9. D. Zambo, A. Schlosser, P. Rusch, F. Lubkemann, J. Koch, H. Pfnur, N.C. Bigall. Small, 16 (16), 1906934 (2020). DOI: 10.1002/smll.201906934
  10. A.M. Green, C.K. Ofosu, J. Kang, E.V. Anslyn, T.M. Truskett, D.J. Milliron. Nano Lett., 22 (4), 1457 (2022). DOI: 10.1021/acs.nanolett.1c04707
  11. S. Ganguly, S. Margel. Talanta Open, 8 (March), 100243 (2023). DOI: 10.1016/j.talo.2023.100243
  12. J. Zhang, J. Jin, J. Wan, S. Jiang, Y. Wue, W. Wang, X. Gong, H. Wang. Chem. Eng. J., 408 (July), 127351 (2021). DOI: 10.1016/j.cej.2020.127351
  13. X. Li, J. Qin, Y. Hu. Microchem. J., 191 (April), 108763 (2023). DOI: 10.1016/j.microc.2023.108763
  14. M. Sun, X. Yang. J. Phys. Chem. C, 113 (20), 8701 (2009). DOI: 10.1021/jp811308h
  15. M. Bugakov, N. Boiko, P. Samokhvalov, X. Zhu, M. Moller, V. Shibaev. J. Mater. Chem. C, 7 (15), 4326 (2019). DOI: 10.1039/c9tc00610a
  16. D.A. East, D.P. Mulvihill, M. Todd, I.J. Bruce. Langmuir, 27 (22), 13888 (2011). DOI: 10.1021/la203273p
  17. E. Lepvrier, C. Doigneaux, L. Moullintraffort, A. Nazabal, C. Garnier. Anal. Chem., 86 (21), 10524 (2014). DOI: 10.1021/ac502561e
  18. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishic, S. Tobita. Phys. Chem. Chem. Phys., 11 (42), 9850 (2009). DOI: 10.1039/b912178a
  19. L. Wu, C. Huang, B.P. Emery, A.C. Sedgwick, S.D. Bull, X.-P.He, H. Tian, J. Yoon, J.L. Sessler, T.D. James. Chem. Soc. Rev., 49 (15), 5110 (2020). DOI: 10.1039/c9cs00318e

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru