Microfluidic platform based on a one-dimensional photonic crystal for label-free optical detection of oligonucleotides
Nifontova G. O.1, Nabiev I. R.1,2,3
1Laboratoire de Recherche en Nanosciences (LRN-EA4682), Université de Reims, Champagne-Ardenne, Reims, France
2Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
3Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, Russia
Email: igor.nabiev@gmail.com
Small circulating extracellular nucleic acids are one of clinically relevant classes of biomarkers of various human pathologies, including autoimmune diseases, cancer, and infectious diseases. To detect circulating DNA (cDNA) in liquid samples, the real-time polymerase chain reaction method based on amplification of cDNA molecules and determination of the degree of accumulation of the fluorescent signal of the reporter tag over time is used. The development of new alternative approaches for rapid and highly accurate detection of small-sized cDNA is of current interest. Optical biosensors for label-free detection based on the analysis of surface wave propagation changes on the surface of a one-dimensional photonic crystal can be adapted for oligonucleotide detection, and their combination with a microfluidic platform can miniaturize, and increase the performance of the bioanalytical procedures. In this study, we demonstrate the possibility of label-free optical detection of low-molecular-weight single-stranded DNA with different numbers of bases without additional signal amplification in the microfluidic mode using a biosensor based on a one-dimensional photonic crystal. Keywords: One-dimensional photonic crystal, surface waves, label-free optical detection, single-stranded DNA, microfluidic platform.
- L. Mou, X. Jiang. Adv. Healthcare Mater., 6 (15), 1601403 (2017). DOI: 10.1002/adhm.201601403
- C. Achille, C. Parra-Cabrera, R. Dochy, H. Ordutowski, A. Piovesan, P. Piron, L. Van Looy, Sh. Kushwaha, D. Reynaerts, P. Verboven, B. Nicolai, J. Lammertyn, D. Spasic, R. Ameloot. Adv. Mater., 33 (25), 2008712 (2021). DOI: 10.1002/adma.202008712
- F. Soltermann, W.B. Struwe, Ph. Kukura. Phys. Chem. Chem. Phys., 23 (31), 16488 (2021). DOI: 10.1039/D1CP01072G
- I. Petrova, V. Konopsky, I. Nabiev, A. Sukhanova. Sci. Rep., 9, 8745 (2019). DOI: 10.1038/s41598-019-45166-3
- I.O. Petrova, V.N. Konopsky, A.V. Sukhanova, I.R. Nabiev. Vestnik RGMU, 4, 22 (2018) (in Russian). DOI: 10.24075/vrgmu.2018.047
- T.V. Mitko, R.I. Shakurov, F.V. Shirshikov, S.V. Sizova, E.V. Alieva, V.N. Konopsky, D.V. Basmanov, Yu .A. Bespyatykh. Klinicheskaya praktika, 12 (2), 14 (2021). (in Russian) DOI: 10.17816/clinpract71815
- V. Konopsky, T. Mitko, K. Aldarov, E. Alieva, D. Basmanov, A. Moskalets, A. Matveeva, O. Morozova, D. Klinov. Biosens. Bioelectron., 168, 112575 (2020). DOI: 10.1016/j.bios.2020.112575
- M. Bartosik, L. Jirakova. Curr. Opin. Electrochem., 14, 96 (2019). DOI: 10.1016/j.coelec.2019.01.002
- C.S. Huertas, O. Calvo-Lozano, A. Mitchell, L.M. Lechuga. Front. Chem., 7, 724 (2019). DOI: 10.3389/fchem.2019.00724
- G. Nifontova, I. Petrova, E. Gerasimovich, V.N. Konopsky, N. Ayadi, C. Charlier, F. Fleury, A. Karaulov, A. Sukhanova, I. Nabiev. Int. J. Mol. Sci., 24 (5), 4347 (2023). DOI: 10.3390/ijms24054347
- A.I. Modenez, D.E. Sastre, C.F. Moraes, C.G.C. Marques Netto. Molecules, 23 (9), 2230 (2018). DOI: 10.3390/molecules23092230
- T.N. Sut, H. Park, D.J. Koo, B.K. Yoon, J.A. Jackman. Sensors, 22 (14), 5185 (2022). DOI: 10.3390/s22145185
- M. Calero, R. Fernandez, P. Garci a, J.V. Garci a, M. Garci a, E. Gamero-Sandemetrio, I. Reviakine, A. Arnau, Y.A. Jimenez. Biosensors, 10 (12), 189 (2020). DOI: 10.3390/bios10120189
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.