Bessolov V. N. 1, Konenkova E.V.1, Rodin S. N.1, Solomnikova A. V.2
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: lena@triat.ioffe.ru
The morphology of ALN layers grown by Metalorganic Chemical Vapor Deposition on nano-structured NP-Si(001) substrates coated with SiNx has been studied using atomic force microscopy. The AlN layers grown on the SiNx/NP-Si(100) template demonstrate a surface roughness 3.8 times less than those obtained on NP-Si(100), and are close to the roughness value for the AlN layer grown on a flat Si(111) substrate. It has been proposed a model to explain the differences in the formation of the surface morphology of AlN layers on the NP-Si(100) substrate and the SiNx/NP-Si(100) template. Keywords: aluminum nitride, silicon nitride, nano-structured silicon substrate.
- L. Wang, W.D. Hu, J. Wang, X.D. Wang, S.W. Wang, X.S. Chen, W. Lu. Appl. Phys. Lett., 100, 123501 (2012). https://doi.org/10.1063/1.3695154
- Y. Taniyasu, M. Kasu, T. Makimoto. Nature, 441, 325 (2006). https://doi.org/10.1038/nature04760
- F. Jose, R. Ramaseshan, S.T. Sundari, S. Dash, A.K. Tyagi, M.S.R.N. Kiran, U. Ramamurty. Appl. Phys. Lett., 101, 254102 (2012). http://dx.doi.org/10.1063/1.4772204
- I.S. Ezubchenko, M.Y. Chernykh, I.O. Mayboroda, I.N. Trun'kin, I.A. Chernykh, M.L. Zanaveskin. Crystallogr. Rep., 65 (1), 122 (2020). https://doi.org/10.1134/S1063774520010071
- Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, Sh. Zhang, M. Ikeda, H. Yang. Light.: Sci. Appl., 7 (1), 13 (2018). https://doi.org/10.1038/s41377-018-0008-y
- Z.-Z.Zhang, J.Yang, D.-G. Zhao, F. Liang, P. Chen, Z.-S. Liu. Chin. Phys. B, 32 (2), 028101 (2023). https://doi.org/10.1088/1674-1056/ac6b2b
- A. Bardhan, S. Raghavan. J. Cryst. Growth, 578, 126418 (2022). https://doi.org/10.1016/j.jcrysgro.2021.126418
- V.N. Bessolov, E.V. Konenkova. Tech. Phys., 68 (9), 1145 (2023). https://doi.org/10.21883/JTF.2023.09.56211.31-23
- M. Monavarian, N. Izyumskaya, M. Muller, S. Metzner, P. Veit, N. Can, S. Das, U. Ozgur, F. Bertram, J. Christen, H. Morko c, V. Avrutin. J. Appl. Phys., 119 (14), 145303 (2016). https://doi.org/10.1063/1.4945770
- X. Luo, X. Zhang, Y. Qian, R. Fang, B. Chen, Y. Shen, Sh. Xu, J. Lyu, M.-J. Lai, G. Hu, Y. Cui. Appl. Surf. Sci., 608 (SC), 155262 (2023). https://doi.org/10.1016/j.apsusc.2022.155262
- F.L. Riley. J. Am. Ceram. Soc., 83 (2), 245 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01182.x
- D. du Boulay, N. Ishizawa, T. Atake, V. Streltsov, K. Furuya, F. Munakata. Acta Cryst. B, 60 (4), 388 (2004). https://doi.org/10.1107/S010876810401393X
- V.V. Lundin, A.F. Tsatsulnikov, S.N. Rodin, A.V. Sakharov, S.O. Usov, M.I. Mitrofanov, Ya.V. Levitskii, V.P. Evtikhiev. Semiconductors, 52 (10), 1357 (2018). https://doi.org/10.21883/FTP.2018.10.46467.8861
- V.K. Smirnov, D.S. Kibalov, O.M. Orlov, V.V. Graboshnikov. Nanotechnology, 14 (7), 709 (2003). https://doi.org/10.1088/0957-4484/14/7/304
- V.N. Bessolov, E.V. Konenkova, T.A. Orlova, S.N. Rodin, A.V. Solomnikova. Tech. Phys., 67 (5), 609 (2022). https://doi.org/10.21883/JTF.2022.05.52376.12-22
- W. Luo, L.Li, Zh.Li, Q. Yang, D. Zhang, X. Dong, D. Peng, L. Pan, Ch. Li, B. Liu, R. Zhong. J. Alloys Compd., 697, 262 (2017). https://doi.org/10.1016/j.jallcom.2016.12.126
- I. Bryan, Z. Bryan, S. Mita, A. Rice, J. Tweedie, R. Collazo, Z. Sitar. J. Cryst. Growth, 438, 81 (2016). https://doi.org/10.1016/j.jcrysgro.2015.12.022
- L.L. Levenson, A. B. Swartzlander, A. Yahashi, H. Usui, I. Yamada. J. Vac. Sci. Technol. A, 8, 1447 (1990). https://doi.org/10.1116/1.576855
- A.V. Babaeva, V.K. Nevolin, V.N. Statsenko, S.D. Fedotova, K.A. Tsarik. Mech. Solids, 55, 84 (2020). https://doi.org/10.31857/S0572329920010043
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.