Impedance spectroscopy study of tandem solar cells based on c-Si with a top layer perovskite nanocrystals CsPbBr3 and CsPbI3
Boudjemila L.
1,2, Nenashev G. V.
2, Malyshkin V. G.
2, Terukov E.I.
2, Aleshin A.N.
21Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: lariessai21@gmail.com, virison95@gmail.com, mal@gromco.com, eug.terukov@mail.ioffe.ru, aleshin@transport.ioffe.ru
The deposition of an additional layer of nanoparticles is a widely used method for improving optical and electrical characteristics of semiconductor solar cells (SCs). We present the results of studies of impedance spectroscopy (IS) in operating sandwich structures based on films of nanocrystals (NCs) of inorganic perovskites of lead halides CsPbI3 and CsPbBr3 deposited on the surface of a SCs based on crystalline silicon (c-Si). The IS results show that under identical conditions the Cole-Cole plots for both structures are in a good agreement with the equivalent circuit model and represents series resistance, recombination resistance and geometric capacitance, respectively, which arise due to charge accumulation, charge transfer resistance and/or additional interfacial electronic states. It was found that adding of the CsPbI3 layer enhances the photo response under bias, but such a photo response leads to a decrease in conductivity. On the contrary, adding of the CsPbBr3 layer blocks the photo response under bias but slightly improves the photo response for the zero bias. The obtained results provide the way to improve the performance of next generation of tandem c-Si SCs with perovskite NCs upper layers. Keywords: Impedance spectroscopy, Solar cell, Perovskites, Nanocrystals, Crystalline silicon.
- G. Eperon, M. Horantner, H. Snaith. Nat. Rev. Chem., 1, 0095 (2017). DOI: 10.1038/s41570-017-0095
- C. Gao, D. Du, W. Shen. Carb Neutrality, 1, 9 (2022). DOI: 10.1007/s43979-022-00003-x
- A. Al-Ashouri, A. Magomedov, M. Rob, M. Jost, M. Talaikis, G. Chistiakova, R. Schlatmann. Science, 366 (6468), 857 (2019). DOI: 10.1126/science.abd4016
- F. Sahli, J. Werner, B.A. Kamino, M. Brauninger, R. Monnard, B. Paviet-Salomon. Nature Mater., 17 (9), 820 (2018). DOI: 10.1038/s41563-018-0115-4
- L. Boudjemila, A.N. Aleshin, V.G. Malyshkin, P.A. Aleshin, I.P. Shcherbakov, V.N. Petrov, E.I. Terukov. Physics Solid State, 64, 1670 (2022). DOI:10.21883/PSS.2022.11.54189.418
- E. Hauff, D. Klotz. J. Mater. Chem. C, 10, 742 (2022). DOI: 10.1039/D1TC04727B
- M.M. Shehata, T.N. Truong, R. Basnet, H.T. Nguyen, D.H. Macdonald, L.E. Black. Solar Energy Materials Solar Cells, 251, 112167 (2023). DOI: 10.1016/j.solmat.2022.112167
- B. Hailegnaw, N.S. Sariciftci, M.C. Scharber. Phys. Status Solidi A, 22, 2000291 (2020). DOI: 10.1002/pssa.202000291
- E. Terukov, A. Kosarev, A. Abramov, E. Malchukova. Solar Panels and Photovoltaic Materials, 5 (2018). DOI: 10.5772/intechopen.75013
- M. Masuko, M. Shigematsu, T. Hasiguchi, D. Fujishima, M. Kai, N. Yoshimira, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto. IEEE J. Photovoltaics, 4, 1433 (2014). DOI: 10.1109/JPHOTOV.2014.2352151
- A.N. Aleshin, I.P. Shcherbakov, E.V. Gushchina, L.B. Matyushkin, V.A. Moshnikov. Organic Electron., 50, 213 (2017). DOI: 10.1016/j.orgel.2017.08.004
- A.N. Aleshin, I.P. Shcherbakov, O.P. Chikalova-Luzina, L.B. Matyushkin, M.K. Ovezov, A.M. Ershova, I.N. Trapeznikova, V.N. Petrov. Synthetic Metals, 260, 116291 (2020). DOI: 10.1016/j.synthmet.2020.116291
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, M.V. Kovalenko. Nano Lett., 15, 3692 (2015). DOI: 10.1021/nl5048779
- A.K. Soni, R. Joshi, R.S. Ningthoujam. Hot Injection Method for Nanoparticle Synthesis: Basic Concepts, Examples and Applications. In: A.K. Tyagi, R.S. Ningthoujam (eds). Handbook on Synthesis Strategies for Advanced Materials (Indian Institute of Metals Series. Springer, Singapore, 2021), DOI: 10.1007/978-981-16-1807-9_13
- A.M. Ivanov, G.V. Nenashev, A.N. Aleshin. J. Mater. Sci.: Mater. Electron., 33, 21666 (2022). DOI: 10.1007/s10854-022-08955-7
- H. Zhang, X. Qiao, Y. Shen, T. Moehl, S.M. Zakeeruddin, M. Gratzel, M. Wang. J. Mater. Chem. A, 3, 11762 (2015). DOI: 10.1039/C5TA02206A
- J. Panigrahi, R. Singh, N. Batra, J. Gope, M. Sharma, P. Pathi, S. Srivastava, C. Rauthan, P. Singh. Sol. Energy, 136, 412 (2016). DOI: 10.1016/j.solener.2016.06.041
- Y. Yorozu, M. Hirano, K. Oka, Y. Tagawa. IEEE Transl. J. Magn. Jpn., 2, 740 (1987)
- J. Li, R. Gao, F. Gao, J. Lei, H. Wang, X. Wu, J. Li, H. Liu, X. Hua, S. Liu. J. Alloys Comp., 818, 152903 (2020). DOI: 10.1016/j.jallcom.2019.152903
- G. Tong, T. Chen, H. Li, W. Song, Y. Chang, J. Liu, L. Yu, J. Xu, Y. Qi, Y. Jiang. Solar RRL, 3, 1900030 (2019). DOI: 10.1002/solr.201900030
- V. Srivastava, A. Alexander, B. Anitha, M.A.G. Namboothiry. Sol. Energy Mat. Sol. Cells, 237, 111548 (2022). DOI: 10.1016/j.solmat.2021.111548
- N.K. Tailor, C.A. Aranda, M. Saliba, S. Satapathi. ACS Mater. Lett., 4, 2298 (2022). DOI: 10.1021/acsmaterialslett.1c00242
- H. Jin, Y. Chen, L. Zhang, R. Wan, Z. Zou, H. Li, Y. Gao. Nanotechnology, 32, 085202 (2020). DOI: 10.1088/1361-6528/abc850
- Q. He, G. Chen, Y. Wang, X. Liu, D. Xu, X. Xu, Y. Liu, J. Bao, X. Wang. Small, 17, 2101403 (2021). DOI: 10.1002/smll.202101403
- M.M. Shehata, T.G. Abdel-Malik, K. Abdelhady. J. Alloys Comp., 736, 225 (2018). DOI: 10.1016/j.jallcom.2017.11.097
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.