The effect of the cavity length on the output optical power of semiconductor laser-thyristors based on AlGaAs/GaAs/InGaAs heterostructures
Gavrina P. S.1, Podoskin A. A.
1, Shushkanov I. V.1, Shashkin I. S.
1, Kriychkov V. A.1, Slipchenko S. O.
1, Pikhtin N. A.
1, Bagaev T. A.
1, Ladugin M. A.2, Marmalyuk A. A.2, Simakov V. A.2
1Ioffe Institute, St. Petersburg, Russia
2
Email: gavrina@mail.ioffe.ru
The effect of laser-thyristor cavity length on the characteristics of the generated laser pulses has been studied. Results show that for pulse durations of approximately ~ 20-30 ns, achieved with a nominal discharge capacitor of 22 nF, increasing the cavity length from 480 to 980 μm enables a rise in maximum peak power from 16.6 W to 25.4 W. A further extension of the cavity length to 1950 μm causes an insignificant decrease in the maximum peak power to 23.7 W due to lower external differential efficiency of the samples at the initial linear region of the light-current curve. However, this extension provides a reduction of optical pulse duration compared to samples of other lengths over the entire supply voltage range. Keywords: laser-thyristor, semiconductor laser, current switch, pulse laser.
- H. Wenzel, A. Klehr, A. Liero, H. Christopher, J. Fricke, A. Maab dorf, A. Zeghuzi, A. Knigge. 2019 IEEE High Power Diode Lasers and Systems Conf. (HPD) (Coventry, UK, 2019) p. 7. DOI: 10.1109/HPD48113.2019.8938682
- S.S. Freeborn, J. Hannigan, F. Greig, R.A. Suttie, H.A. MacKenzie. Rev. Sci. Instrum., 69, 3948 (1998). DOI: 10.1063/1.1149204
- B. Huang, T.T.W. Wong. J. Biomedical Optics, 29 (S1), S11503 (2023). DOI: 10.1117/1.JBO.29.S1.S11503
- B. Svobodova, A. Kloudova, J. Ruzicka, L. Kajtmanova, L. Navratil, R. Sedlacek, T. Suchy, M. Jhanwar-Uniyal, P. Jendelova, M. Jhanwar-Uniyal, P. Jendelova. Sci Rep., 9, 7660 (2019). DOI: 10.1038/s41598-019-44141-2
- S.O. Slipchenko, A.A. Podoskin, A.V. Rozhkov, N.A. Pikhtin, I.S. Tarasov, T.A. Bagaev, M.A. Ladugin, A.A. Marmalyuk, A.A. Padalitsa, V.A. Simakov. IEEE Photon. Technol. Lett., 27, 307 (2015). DOI: 10.1109/LPT.2014.2370064
- P.S. Gavrina, A.A. Podoskin, D.N. Romanovich, V.S. Golovin, D.A. Veselov, S.O. Slipchenko, N.A. Pikhtin, T.A. Bagaev, M.A. Ladugin, A.A. Marmalyuk, V.A. Simakov. Semicond. Sci. Technol., 34, 065025 (2019). DOI: 10.1088/1361-6641/ab1c0a
- N. Ammouri, H. Christopher, J. Fricke, A. Ginolas, A. Liero, A. Maab dorf, H. Wenzel, A. Knigge. Electron. Lett., 59, e12680 (2023). DOI: 10.1049/ell2.12680
- A. Knigge, A. Klehr, H. Wenzel, A. Zeghuzi, J. Fricke, A. Maab dorf, A. Liero, G. Trankle. Phys. Status Solidi A, 215, 1700439 (2018). DOI: 10.1002/pssa.201700439
- Y. Qiu, Y. Xie, W. Wang, W. Liu, L. Kuang, X. Bai, M. Hu, J. Ho. 2019 IEEE 4th Optoelectronics Global Conf. (OGC) (Shenzhen, China, 2019) p. 32. DOI: 10.1109/OGC.2019.8925087
- Y. Zhao, G. Yang, Y. Zhao, S. Tang, Y. Lan, Y. Liu, Z. Wang, A. Demir. IEEE Photonics J., 14, 1557006 (2022). DOI: 10.1109/JPHOT.2022.3211964
- J. Fricke, H. Wenzel, A. Maab dorf, C. Zink, M. Matalla, R. Unger, A. Knigge. Semicond. Sci. Technol., 37, 095021 (2022). DOI: 10.1088/1361-6641/ac860f
- M.A. Ladugin, Yu.P. Koval, A.A. Marmalyuk, V.A. Petrovsky, T.A. Bagaev, A.Yu. Andreev, A.A. Padalitsa, V.A. Simakov. Quant. Electron., 43, 407 (2013). DOI: 10.1070/QE2013v043n05ABEH015156
- A.A. Marmalyuk, E.I. Davydova, M.V. Zverkov, V.P. Konyaev, V.V. Krichevsky, M.A. Ladugin, E.I. Lebedeva, S.V. Petrov, S.M. Sapozhnikov, V.A. Simakov, M.B. Uspensky, I.V. Yarotskaya, N.A. Pihtin, I.S. Tarasov. FTP, 45, 528 (2011). (in Russian)
- S.O. Slipchenko, A.A. Podoskin, D.A. Veselov, V.A. Strelets, N.A. Rudova, N.A. Pikhtin, T.A. Bagaev, M.A. Ladugin, A.A. Marmalyuk, P.S. Kop'ev. IEEE Photon. Technol. Lett., 34 (1), 35 (2022)
- J.J. Coleman, K.J. Beernink. J. Appl. Phys., 75, 1879 (1994). DOI: 10.1063/1.356333
- O.S. Soboleva, V.S. Golovin, V.S. Yuferev, P.S. Gavrina, N.A. Pihtin, S.O. Slipchenko, A.A. Podoskin. Semiconductors, 54, 575 (2020). DOI: 10.21883/FTP.2020.05.49265.9341
- L.A. Coldren, S.W. Corzine, M.L. Mashanovitch. Diode lasers and photonic integrated circuits (Hoboken-N.J., John Wiley \& Sons, 2012)
- A.E. Zhukov, M.V. Maksimov. Sovremennye inzhekcionnye lazery (SPb., Izd-vo Politekhn. un-ta, 2009). (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.