Microdisk lasers based on InGaAs/GaAs quantum dots monolithically integrated with a waveguide
Fominykh N. A.1, Kryzhanovskaya N. V. 1, Komarov S. D. 1, Makhov I. S. 1, Ivanov K. A.1, Moiseev E. I. 1, Antonov E. E.1, Guseva Yu. A. 2, Kulagina M. M. 2, Mintairov S. A. 2, Kalyuzhnyy N. A. 2, Khabibullin R. A.3, Galiev R. R.3, Pavlov A. Yu.3, Tomosh K. N.3, Zhukov A. E. 1
1
2Ioffe Institute, St. Petersburg, Russia
3 Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow, Russia
Email: fominy-nikita@yandex.ru
Microdisk lasers with diameters of 30 and 40 μm with an active region based on InGaAs/GaAs quantum dots, laterally coupled to an optical waveguide, were studied. The microlasers and waveguides were fabricated in a single process on a single GaAs substrate. The spectral characteristics at elevated injection currents on the microlaser and/or waveguide exceeding the lasing threshold by up to 4 times were investigated. The possibility of reducing absorption losses in the waveguide by applying a direct bias to it was shown. An optocouple in which a microdisk laser coupled to a waveguide serves as a radiation source and a waveguide photodetector as a radiation receiver was realized. The dark current density of the waveguide photodetector was 1.1 μA/cm2 at a reverse bias of -6 V. Keywords: Microlasers, quantum dots, waveguides, optocouple, waveguide photodetector.
- X. Mu, S. Wu, L. Cheng, H.Y. Fu. Appl. Sci., 10 (4), 1538 (2020)
- P. Jiang and K.C. Balram. Opt. Express, 28 (8), 12262 (2020)
- N. Kryzhanovskaya, A. Zhukov, E. Moiseev, M. Maximov. J. Phys. D: Appl. Phys., 54 (45), 453001 (2021)
- F. Ou, X. Li, B. Liu, Y. Huang, S.T. Ho. Optics lett., 35 (10), 1721 (2010)
- W.W. Wong, C. Jagadish, H.H. Tan. IEEE J. Quant. Electron., 58 (4), 1 (2022)
- X.M. Lv, Y.Z. Huang, Y.D. Yang, H. Long, L.X. Zou, Q.F. Yao, X. Jin, J.L. Xiao, Y. Du. Opt. Express, 21 (13), 16069 (2013)
- S.J. Choi, K. Djordjev, S.J. Choi, P.D. Dapkus. IEEE Photon. Technol. Lett., 15 (10), 1330 (2003)
- W. Xie, T. Stoferle, G. Raino, T. Aubert, S. Bisschop, Y. Zhu, R.F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, D.V. Thourhout. Advanced Mater., 29 (16), 1604866 (2017)
- X. Xu, T. Maruizumi, Y. Shiraki. Opt. Express, 22 (4), 3902 (2014)
- L.X. Zou, X.M. Lv, Y.Z. Huang, H. Long, Q.F. Yao, Y. Du. Optics and Photonics J., 3 (2), 66 (2013)
- N.V. Kryzhanovskaya, K.A. Ivanov, N.A. Fominykh, S.D. Komarov, I.S. Makhov, E.I. Moiseev, J.A. Guseva, M.M. Kulagina, S.A. Mintairov, N.A. Kalyuzhnyy, A.I. Lihachev, R.A. Khabibullin, R.R. Galiev, A.Yu. Pavlov, K.N. Tomosh, M.V. Maximov, A.E. Zhukov. J. Appl. Phys., 134 (10), 103101 (2023)
- D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A.C. Gossard, J.E. Bowers. Appl. Phys. Lett., 113 (9), 093506 (2018)
- N.V. Kryzhanovskaya, S.A. Blokhin, I.S. Makhov, E.I. Moiseev, A.M. Nadtochiy, N.A. Fominykh, S.A. Mintairov, N A. Kalyuzhny, Yu.A. Guseva, M.M. Kulagina, F.I. Zubov, E.S. Kolodezny, M.V. Maksimov, A.E. Zhukov. FTP, 57 (3), 202(2023). (in Russian)
- N.V. Kryzhanovskaya, E.I. Moiseev, A.M. Nadtochiy, A.A. Kharchenko, M.M. Kulagina, S.A. Mintairov, N.A. Kalyuzhny, M.V. Maksimov, A.E. Zhukov. Pis'ma ZhTF, 46 (13), 7 (2020). (in Russian)
- S.A. Mintairov, N.A. Kalyuzhnyy, V.M. Lantratov, M.V. Maximov, A.M. Nadtochiy, S. Rouvimov, A.E. Zhukov. Nanotechnology, 26 (38), 385202 (2015)
- M.K. Chin, S.T. Ho. J. Lightwave Technol., 16 (8), 1433 (1998)
- F. Zubov, M. Maximov, E. Moiseev, A. Vorobyev, A. Mozharov, Yu. Berdnikov, N. Kaluzhnyy, S. Mintairov, M. Kulagina, N. Kryzhanovskaya, A. Zhukov. Optics Lett., 46 (16), 3853 (2021)
- J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K.M. Lau, A.C. Gossard, J.E. Bowers, B. Chen. ACS Photonics, 6 (5), 1100 (2019)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.