Alternative phase functions in the modelling of coherent backscattering
KuzminV.L.1, Zhavoronkov Yu. A.1,2, Ul’yanov S. V.2
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: kuzmin_vl@mail.ru
Modelling of the coherent backscattering effect based on the Bethe-Solpeter equation has been carried out when anisotropy is taken into account using two different phase functions. It is found that with increasing anisotropy of the single scattering indicatrix, calculations with the Rayleigh-Gans phase function lead to wider angular peaks of coherent backscattering than calculations with the Henya-Greenstein phase function. Monte Carlo simulations of coherent backscattering based on the Rayleigh-Hans phase function have been performed for the first time. On the basis of alternative phase functions, the effect of decreasing the spatial coherence length of the incident radiation on the shape of the angular peak of coherent backscattering is investigated. It is shown that with decreasing coherence length both models lead to broadening of the peak, which can be used in biomedical diagnostics. Keywords: Coherent backscattering, Monte Carlo simulations, Bethe-Solpeter equation.
- D.A. Boas, L.E. Campbell, A.G. Yodh. Phys. Rev. Lett., 75, 1855 (1995). DOI: 10.1103/PhysRevLett.75.1855
- V.V. Tuchin. Optika biologicheskikh tkanei. Metody rasseyaniya sveta v meditsinskoi diagnostike (IPR Media, M., 2021) (in Russian)
- S.L. Jacques. Phys. Med. Biol., 58, R37 (2013). DOI: 10.1088/0031-9155/58/11/R37
- D.J. Davies, Z. Su, M.T. Clancy, S.J. Lucas, H. Dehghani, A. Logan, A. Belli. J. Neurotrauma, 32, 933 (2015). DOI: 10.1089/neu.2014.3748
- A. Sabeeh, V.V. Tuchin. J. Biomed. Photonics \& Engineering, 6, 040201 (2020). DOI: 10.18287/JBPE20.06.040201
- A.P. Tran, S. Yan, Q. Fang. Neurophoton, 7, 015008 (2020). DOI: 10.1117/1.NPh.7.1.015008
- K. M. Watson. J. Math. Phys., 10, 688 (1969). DOI: 10.1063/1.1664895
- D.A. de Wolf. IEEE Trans on Antennas and Propagation, 19, 254 (1971). DOI: 10.1109/TAP.1971.1139894
- Yu.N. Barabanenkov. Radiophys. Quantum Electron., 16, 65 (1973)
- A.G. Vinogradov, Yu.A. Kravtsov, V.I. Tatarskii. Radiophys. Quantum Electron., 16, 818 (1973)
- Y. Kuga, A. Ishimaru. J. Opt. Soc. Am. A, 1, 831 (1984)
- M. P. Van Albada, A. Lagendijk. Phys. Rev. Lett., 55, 2692 (1985). DOI: 10.1103/PhysRevLett.55.2692
- P.-E. Wolf, G. Maret. Rev. Lett., 55, 2696 (1985)
- E. Akkermans, P. Wolf, R. Maynard, G. Maret. J. Phys. France, 49, 77 (1988). DOI: 10.1051/jphys:0198800490107700
- D.J. Pine, D.A. Weitz, P.M. Chaikin, E. Herbolzheimer. Phys. Rev. Lett., 60, 1134 (1988)
- P. Wolf, G. Maret, E. Akkermans, R. Maynard. J. Phys. France, 49, 63 (1988). DOI: 10.1103/PhysRevLett.60.1134
- F. Scholkmann, S. Kleiser, A.J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, M. Wolf. Neuroimage, 85, 6 (2014). DOI: 10.1016/j.neuroimage.2013.05.004
- H. Liu, D.A. Boas, Y. Zhang, A.G. Yodh, B. Chance. Phys. Med. Biol., 40, 1983 (1995). DOI: 10.1088/0031-9155/40/11/015
- O. Pucci, V. Toronov, K. St Lawrence. Appl. Opt., 49, 6324 (2010). DOI: 10.1364/AO.49.006324
- V.L. Kuzmin, Yu.A. Zhavoronkov, S.V. Ul'yanov, A.Yu. Valkov. J. Exp. Theor. Phys., 134, 661 (2022). DOI: 10.31857/S0044451022060013
- J. Zhao, H.S. Ding, X.L. Hou, C.L. Zhou, B. Chance. J. Biomed. Opt., 10, 024028 (2005). DOI: 10.1117/1.1891345
- V. Ntziachristos, B. Chance. Med. Phys., 28, 1115 (2001). DOI: 10.1118/1.1373674
- A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, L. Spinelli. Neuroimage, 85, 28 (2014). DOI: 10.1016/j.neuroimage.2013.05.106
- H. Wabnitz, J. Rodriguez, I. Yaroslavsky, A. Yaroslavsky, V. V. Tuchin. Handbook of Optical Biomedical Diagnostics. Light-Tissue Interaction, 2nd ed., Vol. 1 (SPIE Press, Bellingham, Washington, 2016)
- T. Durduran, R. Choe, J.P. Culver, L. Zubkov, M.J. Holboke, J. Giammarco, B. Chance, A.G. Yodh. Phys. Med. Biol., 47, 2847 (2002). DOI: 10.1088/0031-9155/47/16/302
- M.A. Franceschini, S. Thaker, G. Themelis, K.K. Krishnamoorthy, H. Bortfeld, S.G. Diamond, D.A. Boas, K. Arvin, P.E. Grant. Frequency-Domain Near-Infrared Spectroscopy, Pediatr. Res., 61, 546 (2007). DOI: 10.1203/pdr.0b013e318045be99
- A. Ishimaru. Wave Propagation and Scattering in Random Media. DOI: 10.1016/B978-0-12-374701-3.X5001-7
- V.L. Kuz'min, A.Yu. Val'kov, L.A. Zubkov. J. Exp. Theor. Phys., 128, 396 (2019). DOI: 10.1134/S1063776119020109
- I.M. Sobol'. Chislennye metody Monte-Karlo (Nauka, M., 1973) (in Russian)
- V.L. Kuzmin, V.P. Romanov, E.V. Aksenova. Phys. Rev. E, 65, 016601 (2001). DOI: 10.1103/PhysRevE.65.016601
- T.M. Nieuwenhuizen J. M. Luck. Phys. Rev. E, 48, 569 (1993)
- L. Wang, S. L. Jacques, L. Q. Zheng. Comput. Meth. Prog. Bio., 47, 131 (1995). DOI: 10.1016/0169-2607(95)01640-F
- L. Devroye. Non-Uniform Random Variate Generation (Springer, New York, 1986)
- V.L. Kuzmin, A.Yu. Val'kov. JETP Lett., 105, 283 (2017). DOI: 10.1134/S0021364017050101
- S. Chandrasekhar. Radiative Transfer (Clarendon Press, 1950)
- Y.L. Kim, P. Pradhan, H. Subramanian, Y. Liu, M.H. Kim, V. Backman. Opt. Lett., 31, 1459 (2006). DOI: 10.1364/OL.31.001459
- Y. L. Kim, Y. Liu, V.M. Turzhitsky, H.K. Roy., R.K. Wali, H. Subramanian, P. Pradhan, V. Backman. J. Biomed. Opt., 11, 041125 (2006). DOI: 10.1117/1.2236292
- D.S. Wiersma, M.P. van Albada, A. Lagendijk. Phys. Rev. Lett., 75, 1739 (1995). DOI: 10.1103/PhysRevLett.75.1739
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.