Alternative phase functions in the modelling of coherent backscattering
KuzminV.L.1, Zhavoronkov Yu. A.1,2, Ul’yanov S. V.2
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: kuzmin_vl@mail.ru

PDF
Modelling of the coherent backscattering effect based on the Bethe-Solpeter equation has been carried out when anisotropy is taken into account using two different phase functions. It is found that with increasing anisotropy of the single scattering indicatrix, calculations with the Rayleigh-Gans phase function lead to wider angular peaks of coherent backscattering than calculations with the Henya-Greenstein phase function. Monte Carlo simulations of coherent backscattering based on the Rayleigh-Hans phase function have been performed for the first time. On the basis of alternative phase functions, the effect of decreasing the spatial coherence length of the incident radiation on the shape of the angular peak of coherent backscattering is investigated. It is shown that with decreasing coherence length both models lead to broadening of the peak, which can be used in biomedical diagnostics. Keywords: Coherent backscattering, Monte Carlo simulations, Bethe-Solpeter equation.
  1. D.A. Boas, L.E. Campbell, A.G. Yodh. Phys. Rev. Lett., 75, 1855 (1995). DOI: 10.1103/PhysRevLett.75.1855
  2. V.V. Tuchin. Optika biologicheskikh tkanei. Metody rasseyaniya sveta v meditsinskoi diagnostike (IPR Media, M., 2021) (in Russian)
  3. S.L. Jacques. Phys. Med. Biol., 58, R37 (2013). DOI: 10.1088/0031-9155/58/11/R37
  4. D.J. Davies, Z. Su, M.T. Clancy, S.J. Lucas, H. Dehghani, A. Logan, A. Belli. J. Neurotrauma, 32, 933 (2015). DOI: 10.1089/neu.2014.3748
  5. A. Sabeeh, V.V. Tuchin. J. Biomed. Photonics \& Engineering, 6, 040201 (2020). DOI: 10.18287/JBPE20.06.040201
  6. A.P. Tran, S. Yan, Q. Fang. Neurophoton, 7, 015008 (2020). DOI: 10.1117/1.NPh.7.1.015008
  7. K. M. Watson. J. Math. Phys., 10, 688 (1969). DOI: 10.1063/1.1664895
  8. D.A. de Wolf. IEEE Trans on Antennas and Propagation, 19, 254 (1971). DOI: 10.1109/TAP.1971.1139894
  9. Yu.N. Barabanenkov. Radiophys. Quantum Electron., 16, 65 (1973)
  10. A.G. Vinogradov, Yu.A. Kravtsov, V.I. Tatarskii. Radiophys. Quantum Electron., 16, 818 (1973)
  11. Y. Kuga, A. Ishimaru. J. Opt. Soc. Am. A, 1, 831 (1984)
  12. M. P. Van Albada, A. Lagendijk. Phys. Rev. Lett., 55, 2692 (1985). DOI: 10.1103/PhysRevLett.55.2692
  13. P.-E. Wolf, G. Maret. Rev. Lett., 55, 2696 (1985)
  14. E. Akkermans, P. Wolf, R. Maynard, G. Maret. J. Phys. France, 49, 77 (1988). DOI: 10.1051/jphys:0198800490107700
  15. D.J. Pine, D.A. Weitz, P.M. Chaikin, E. Herbolzheimer. Phys. Rev. Lett., 60, 1134 (1988)
  16. P. Wolf, G. Maret, E. Akkermans, R. Maynard. J. Phys. France, 49, 63 (1988). DOI: 10.1103/PhysRevLett.60.1134
  17. F. Scholkmann, S. Kleiser, A.J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, M. Wolf. Neuroimage, 85, 6 (2014). DOI: 10.1016/j.neuroimage.2013.05.004
  18. H. Liu, D.A. Boas, Y. Zhang, A.G. Yodh, B. Chance. Phys. Med. Biol., 40, 1983 (1995). DOI: 10.1088/0031-9155/40/11/015
  19. O. Pucci, V. Toronov, K. St Lawrence. Appl. Opt., 49, 6324 (2010). DOI: 10.1364/AO.49.006324
  20. V.L. Kuzmin, Yu.A. Zhavoronkov, S.V. Ul'yanov, A.Yu. Valkov. J. Exp. Theor. Phys., 134, 661 (2022). DOI: 10.31857/S0044451022060013
  21. J. Zhao, H.S. Ding, X.L. Hou, C.L. Zhou, B. Chance. J. Biomed. Opt., 10, 024028 (2005). DOI: 10.1117/1.1891345
  22. V. Ntziachristos, B. Chance. Med. Phys., 28, 1115 (2001). DOI: 10.1118/1.1373674
  23. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, L. Spinelli. Neuroimage, 85, 28 (2014). DOI: 10.1016/j.neuroimage.2013.05.106
  24. H. Wabnitz, J. Rodriguez, I. Yaroslavsky, A. Yaroslavsky, V. V. Tuchin. Handbook of Optical Biomedical Diagnostics. Light-Tissue Interaction, 2nd ed., Vol. 1 (SPIE Press, Bellingham, Washington, 2016)
  25. T. Durduran, R. Choe, J.P. Culver, L. Zubkov, M.J. Holboke, J. Giammarco, B. Chance, A.G. Yodh. Phys. Med. Biol., 47, 2847 (2002). DOI: 10.1088/0031-9155/47/16/302
  26. M.A. Franceschini, S. Thaker, G. Themelis, K.K. Krishnamoorthy, H. Bortfeld, S.G. Diamond, D.A. Boas, K. Arvin, P.E. Grant. Frequency-Domain Near-Infrared Spectroscopy, Pediatr. Res., 61, 546 (2007). DOI: 10.1203/pdr.0b013e318045be99
  27. A. Ishimaru. Wave Propagation and Scattering in Random Media. DOI: 10.1016/B978-0-12-374701-3.X5001-7
  28. V.L. Kuz'min, A.Yu. Val'kov, L.A. Zubkov. J. Exp. Theor. Phys., 128, 396 (2019). DOI: 10.1134/S1063776119020109
  29. I.M. Sobol'. Chislennye metody Monte-Karlo (Nauka, M., 1973) (in Russian)
  30. V.L. Kuzmin, V.P. Romanov, E.V. Aksenova. Phys. Rev. E, 65, 016601 (2001). DOI: 10.1103/PhysRevE.65.016601
  31. T.M. Nieuwenhuizen J. M. Luck. Phys. Rev. E, 48, 569 (1993)
  32. L. Wang, S. L. Jacques, L. Q. Zheng. Comput. Meth. Prog. Bio., 47, 131 (1995). DOI: 10.1016/0169-2607(95)01640-F
  33. L. Devroye. Non-Uniform Random Variate Generation (Springer, New York, 1986)
  34. V.L. Kuzmin, A.Yu. Val'kov. JETP Lett., 105, 283 (2017). DOI: 10.1134/S0021364017050101
  35. S. Chandrasekhar. Radiative Transfer (Clarendon Press, 1950)
  36. Y.L. Kim, P. Pradhan, H. Subramanian, Y. Liu, M.H. Kim, V. Backman. Opt. Lett., 31, 1459 (2006). DOI: 10.1364/OL.31.001459
  37. Y. L. Kim, Y. Liu, V.M. Turzhitsky, H.K. Roy., R.K. Wali, H. Subramanian, P. Pradhan, V. Backman. J. Biomed. Opt., 11, 041125 (2006). DOI: 10.1117/1.2236292
  38. D.S. Wiersma, M.P. van Albada, A. Lagendijk. Phys. Rev. Lett., 75, 1739 (1995). DOI: 10.1103/PhysRevLett.75.1739

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru