Sink strengths of low-angle tilt boundaries for self-point defects in BCC iron and vanadium
Sivak A. B.
1, Chernov V. M.
21National Research Center “Kurchatov Institute”, Moscow, Russia
2A.A. Bochvar All-Russia Advanced Research Institute for Inorganic Materials, Moscow, Russia
Email: sivak_ab@nrcki.ru, vmchernov@bochvar.ru
For low-angle tilt boundaries formed by dislocation walls of straight edge dislocations in slip systems <111>110 and <111>112, the sink strengths for self-point defects (vacancies and self-interstitial atoms) and the bias factors (relative difference in the sink strengths for self-interstitial atoms and vacancies) have been calculated in BCC metals Fe and V. The calculations have been performed using the object kinetic Monte Carlo method in the temperature range 293-1000 K, the subgrain misorientation angles 1.5-10o and the subgrain sizes 150-900 a (a is the lattice parameter). The elastic interaction of self-point defects in stable and saddle-point configurations (elastic dipoles) with the elastic fields of dislocation walls has been calculated by means of the anisotropic theory of elasticity (metals Fe and V differ significantly in the elastic anisotropy ratio). The sink strengths of low-angle boundaries do not depend (within the calculation accuracy) on their type (the slip system of dislocations). The bias factor value varies with temperature in the range of 15-30% and is inversely proportional to the misorientation angle and the size of the subgrains. The bias factors in Fe and V are significantly different (for V it is several times less). Keywords: low-angle tilt boundaries, sink strengths, bias factors, iron, vanadium.
- Elastic strain fields and dislocation mobility / Eds V.L. Indenbom, J. Lothe. Elsevier Science, North-Holland, Amsterdam (1992). 793 p
- J. Hirth, J. Lothe. Theory of dislocations. John Wiley \& Sons, Hoboken (1982). 857 p
- R.W. Siegel, S.M. Chang, R.W. Balluffi. Acta Metall 28, 3, 249 (1980). https://doi.org/10.1016/0001-6160(80)90159-5
- A.H. King, D.A. Smiths. Rad. Eff. 54, 3--4, 169 (1981). https://doi.org/10.1080/00337578108210044
- R.R. Galimov, S.B. Goryachev. Phys. Status Solidi B 153, 2, 443 (1989). https://doi.org/10.1002/pssb.2221530204
- C. Jiang, N. Swaminathan, J. Deng, D. Morgan, I. Szlufarska. Mater. Res. Lett. 2, 2, 100 (2014). https://doi.org/10.1080/21663831.2013.871588
- A.B. Sivak, P.A. Sivak, V.A. Romanov, V.M. Chernov. PAS\&T. Ser. Thermonuclear fusion 38, 2, 43-50 (2015). (in Russian) https://doi.org/10.21517/0202-3822-2015-38-2-43-50
- A.B. Sivak, V.A. Romanov, V.M. Chernov. Crystallography Rep. 55, 1, 97 (2010). https://doi.org/10.1134/S1063774510010153
- A.B. Sivak, V.M. Chernov, V.A. Romanov, P.A. Sivak. J. Nucl. Mater. 417, 1--3, 1067 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.176
- A.B. Sivak, P.A. Sivak, V.A. Romanov, V.M. Chernov. Inorg. Mater. Appl. Res. 6, 2, 105 (2015). https://doi.org/10.1134/S2075113315020161 https://elibrary.ru/item.asp?id=22027294
- J.A. Rayne, B.S. Chandrasekhar. Phys. Rev. 122, 6, 1714 (1961). https://doi.org/10.1103/PhysRev.122.1714
- D.I. Bolef, R.E. Smith, J.G. Miller. Phys. Rev. B 3, 12--15, 4100 (1971). https://doi.org/10.1103/PhysRevB.3.4100
- S.I. Golubov, A.V. Barashev, R.E. Stoller. In: Comprehensive Nuclear Materials / Eds R.J.M. Konings, R.E. Stoller. 2 Ed. Elsevier, Amsterdam (2020). V. 1. P. 717. https://doi.org/10.1016/B978-0-12-803581-8.00663-9
- F.A. Nichols. J. Nucl. Mater. 75, 1, 32 (1978). https://doi.org/10.1016/0022-3115(78)90026-0
- T.N. Vershinina, Yu.R. Kolobov, M.V. Leont'eva-Smirnova. Steel in Translation 42, 8, 627 (2012). https://doi.org/10.3103/S0967091212080141
- T. Vershinina, M. Leont'eva-Smirnova. Mater. Characterization 125, 23 (2017). https://doi.org/10.1016/j.matchar.2017.01.018
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.