Simulation of the ultra-short pulses dynamics in a polymer composite with graphene nanoribbons and metal nanoparticles
In this paper, we study the evolution of a short-duration two-dimensional and three-dimensional electromagnetic pulse when it interacts with a composite of a polymer and graphene nanoribbons containing metal nanoparticles (atoms adsorbed on the graphene surface). Based on the wave equation, taking into account the contributions of the nanoribbons and polymer to the current, an effective equation for the vector potential of the electric field of the pulse is obtained. It is found that the introduction of metal adatoms into the polymer matrix causes a change in the amplitude of the wave propagating in such a system. The parameters of the electromagnetic wave are analyzed depending on the pulse type (two-dimensional and three-dimensional), the type of metal particle, and the concentration of the polymer in the composite. Keywords: polymer composite, graphene nanoribbons, metal nanoparticles, electromagnetic pulses.
- P. Harris. Carbon Nanotubes and Related Structures. New Materials for the Twenty-First Century (Cambridge Univ. Press, 1999)
- N.N. Konobeeva, E.G. Fedorov, N.N. Rosanov, A.V. Zhukov, R. Bouffanais, J. Appl. Phys., 126, 203103 (2019). DOI: 10.1063/1.5128365
- A. Molle, C. Grazianetti, L. Tao, D. Taneja, Md.H. Alam, D. Akinwande. Chem. Soc. Rev., 47, 6370 (2018). DOI: 10.1039/C8CS00338F
- A.V. Zhukov, R. Bouffanais, N.N. Konobeeva, M.B. Belonenko. Phys. Lett. A, 380 (38), 3117 (2016). DOI: 10.1016/j.physleta.2016.07.021
- N.N. Konobeeva, M.B. Belonenko. Tech. Phys. Lett., 43 (4), 386 (2017). DOI: 10.1134/S106378501704023X
- S. Malik, J. Singh, R. Goyat, Ya. Saharan, V. Chaudhry, A. Umar, A.A. Ibrahim, S. Akbar, S. Ameen, S. Baskoutas. Heliyon, 9 (9), e19929 (2023). DOI: 10.1016/j.heliyon.2023.e19929
- Q.T. Phan, K.Ch. Poon, H. Sato. Intern. J. Hydrogen Energy, 46 (27), 14190 (2021). DOI: 10.1016/j.ijhydene.2021.02.006
- L. Shang, T. Bian, B. Zhang, D. Zhang, L.Z. Wu, C.H. Tung, Y. Yin, T. Zhang, Angew. Chem., 53, 250 (2014). DOI: 10.1002/anie.201306863
- J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang, Z. Zhang. Nanoscale, 2, 2733 (2010). DOI: 10.1039/C0NR00473A
- A. Tavousi, M.A. Mansouri-Birjandi, M. Janfaza. Appl. Opt., 57 (20), 5800 (2018). DOI: 10.1364/AO.57.005800
- Y. Liu, S. Wang, H. Liu, L.-M. Peng. Nature Commun., 8, Art. N 15649 (2017). DOI: 10.1038/ncomms15649
- Y. Wang, G. Sun, X. Zhang, X. Zhang, Z. Cui. Adv. Electronic Mater., 10 (10), 2400124 (2024). DOI: 10.1002/aelm.202400124
- S. Majumder, A. Meher, S. Moharana, K.H. Kim. Carbon, 216, 118558 (2024). DOI: 10.1016/j.carbon.2023.118558
- C. Tian, W. Miao, L. Zhao, J. Wang. Rev. Phys., 10, Art. N 100082 (2023). DOI: 10.1016/j.revip.2023.100082
- A.P. Johnson, C. Sabu, N.K. Swamy, A. Anto, H.V. Gangadharappa, K. Pramod. Biosens. Bioelectron., 184, Art. N 113245 (2021). DOI: 10.1016/j.bios.2021.113245
- P.V. Fedotov, D.V. Rybkovskiy, I.V. Novikov, E.D. Obraztsova. Phys. Status Solidi, 259, Art. N 2100501 (2022). DOI: 10.1002/pssb.202100501
- S. Jeon, P. Han, J. Jeong, W.S. Hwang, S.W. Hong. Nanomaterials, 11 (1), 33 (2021). DOI: 10.3390/nano11010033
- Z. Zhang, A. Fraser, S. Ye, G. Merle, J. Barralet. Nano Futur, 3, Art. N 42003 (2019). DOI: 10.1088/2399-1984/ab4eff
- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys., 81, 109 (2009). DOI: 10.1103/RevModPhys.81.109
- R.J. Castellano, C. Aki, G. Giraldo, S. Kim, F. Fornasiero, J.W. Shan. J. Appl. Phys., 117, 214306 (2015). DOI: 10.1063/1.4921948
- F. Bondino, E. Magnano, R. Ciancio, C. Castellarin Cudia, A. Barla, E. Carlino, F. Yakhou-Harris, N. Rupesinghe, C. Cepek. Phys. Chem. Chem. Phys., 19, 32079 (2017). DOI: 10.1039/C7CP05181F
- D. Urk, F. C. Cebeci, M.L. Ove cov glu, H. Cebeci. Mater. Adv., 2, 2021 (2021). DOI: 10.1039/D0MA00826E
- C. Zamora-Ledezma, C. Blanc, E. Anglaret. J. Phys. Chem., 116, 13760 (2012). DOI: 10.1021/jp212113b
- N.N. Konobeeva. Optik, 157, 521 (2018). DOI: 10.1016/j.ijleo.2017.11.133
- [E.N. Galkina, M.B. Belonenko. Opt. Spectr., 129 (10), 1280 (2021). DOI: 10.21883/EOS.2022.13.53983.1838-21
- S.V. Belibikhin, N.N. Konobeeva. Nanosystems: Phys., Chem., Mathem., 15 (1), 60 (2024). DOI: 10.17586/2220-8054-2024-15-1-60-64
- P.B. Sorokin, L.A. Chernozatonskii. Phys.-Usp., 56 (2), 105 (2013). DOI: 10.3367/UFNe.0183.201302a.0113
- H. Tanaka, R. Arima, M. Fukumori, D. Tanaka, R. Negishi, Y. Kobayashi, S. Kasai, T.K. Yamada, T. Ogawa. Sci. Reports, 5, Art. N 12341 (2015). DOI: 10.1038/srep12341
- K. Zollner, M. Gmitra, T. Frank, J. Fabian. Phys. Rev. B, 94, 155441 (2016). DOI: 10.1103/PhysRevB.94.155441
- A. Dyrda, J. Barnas. 2D Materials, 4, 034003 (2017). DOI: 10.1088/2053-1583/aa7bac
- M. Wawrzyniak-Adamczewska. Electron. Struct., 1, 015006 (2019). DOI: 10.1088/2516-1075/aade6
- G.A. Korn, T.M. Korn. Spravochnik po matematike (dlya nauchnykh rabotnikov i inzhenerov) (Nauka, M., 1974), pp. 43-45 (in Russian)
- F.G. Bass, A.A. Bulgakov, A.P. Tetervov. Vysokochastotnye svoistva poluprovodnikov so sverkhreshetkami (Nauka, M., 1989) (in Russian)
- V.A. Osipov, V.K. Fedyanin. Rasseyanie sveta na solitonakh v poliatsetilene (Ob"ed. Inst. Yad. Issled., Dubna, 1984) (in Russian)
- J.W. Thomas. Numerical partial differential equations-finite difference methods (Springer-Verlag, NY., 1995)
- A.V. Zhukov, R. Bouffanais, E.G. Fedorov, M.B. Belonenko. J. Appl. Phys., 114, 143106 (2013). DOI: 10.1063/1.4824370
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.