Modeling the thermal conductivity of black phosphorene using deep learning
Zav’yalov D.V. 1, Zharikov D.N. 1, Konchenkov V.I. 1,2, Shein D.V. 1
1Volgograd State Technical University, Volgograd, Russia
2Volgograd State Socio-Pedagogical University, Volgograd, Russia
Email: sinegordon@gmail.com, dimitrol@mail.ru, kontchenkov@yandex.ru, danil.shein2013@yandex.ru

PDF
With the help of a convolutional neural network with continuous filtering SchNet, trained on the simulation data by the Car-Parrinello quantum molecular dynamics method, the potential of the black phosphorene force field is constructed, applicable for use in the framework of modeling by the classical molecular dynamics method. The parameters of the neural network and the ways of its training are revealed, which allow us to build the most realistic representation of the force field. Using a force field calculated by a neural network, the thermal conductivity of a sample of black phosphorene in a LAMMPS package was simulated. The calculated values of thermal conductivity are consistent with the data obtained by other groups experimentally and within the framework of calculations. Keywords: convolutional neural networks, the potential of interatomic interaction, classical molecular dynamics.
  1. P. Li, I. Appelbaum. Phys. Rev. B, 90, 115439 (2014). DOI: 10.1103/PhysRevB.90.115439
  2. M. Galluzzi, Y. Zhang, X.-F. Yu. J. Appl. Phys., 128, 230903 (2020). DOI: 10.1063/5.0034893
  3. Zh. Fan, Y. Xiao, Y. Wang, P. Ying, Sh. Chen, H. Dong. J. Phys.: Condens. Matter, 36 (24), 245901 (2024). DOI: 10.1088/1361-648X/ad31c2
  4. K.A. Krylova, L.R. Safina, R.T. Murzaev, S.A. Shcherbinin, Yu.A. Baimova, R.R. Mulyukov. Phys. Solid State, 65 (9), 1514 (2023). DOI: 10.21883/FTT.2023.09.56256.101
  5. P. Anees. J. Phys.: Condens. Matter, 32 (33), 335402 (2020). DOI: 10.1088/1361-648X/ab8761
  6. Q.-X. Pei, X. Zhang, Zh. Ding, Y.-Y. Zhang, Y.-W. Zhang. Phys. Chem. Chem. Phys., 19, 17180 (2017). DOI: 10.1039/C7CP02553J
  7. J. Wu, S. Chen, Ch. Chen, Y. Ma, Y. Tian. arXiv:2010.11414 (2020). DOI: 10.48550/arXiv.2010.11414
  8. M.E. Tuckerman. J. Phys.: Condens. Matter, 14, R1297 (2002). DOI: 10.1088/0953-8984/14/50/202
  9. J. Han, L. Zhang, R. Car, W. E. Commun. Comput. Phys., 23 (3), 629 (2018). DOI: 10.4208/cicp.OA-2017-0213
  10. L. Zhang, J. Han, H. Wang, R. Car, W. E. Phys. Rev. Lett., 120, 143001 (2018). DOI: 10.1103/PhysRevLett.120.143001
  11. J. Zeng, D. Zhang, D. Lu, P. Mo, Z. Li, Y. Chen, M. Rynik, L. Huang, Z. Li, Sh. Shi, Y. Wang, H. Ye, P. Tuo, J. Yang, Y. Ding, Y. Li, D. Tisi, Q. Zeng, H. Bao, Y. Xia, J. Huang, K. Muraoka, Y. Wang, J. Chang, F. Yuan, S.L. Bore, Ch. Cai, Y. Lin, B. Wang, J. Xu, J.-X. Zhu, Ch. Luo, Y. Zhang, R.E.A. Goodall, W. Liang, A.K. Singh, S. Yao, J. Zhang, R. Wentzcovitch, J. Han, J. Liu, W. Jia, D.M. York, W.E.R. Car, L. Zhang, H. Wang. J. Chem. Phys., 159 (5), 054801 (2023). DOI: 10.1063/5.0155600
  12. D. Lu, H. Wang, M. Chen, L. Lin, R. Car, W. E, W. Jia, L. Zhang. Comput. Phys. Commun., 259, 107624 (2021). DOI: 10.1016/j.cpc.2020.107624
  13. I. Batatia, Ph. Benner, Y. Chiang, A.M. Elena, D.P. Kovacs, J. Riebesell, X.R. Advincula, M. Asta, M. Avaylon, W.J. Baldwin, F. Berger, N. Bernstein, A. Bhowmik, S.M. Blau, V. Carare, J.P. Darby, S. De, F.D. Pia, V.L. Deringer, R. Elijov sius, Z. El-Machachi, F. Falcioni, E. Fako, A.C. Ferrari, A. Genreith-Schriever, J. George, R.E.A. Goodall, C.P. Grey, P. Grigorev, Sh. Han, W. Handley, H.H. Heenen, K. Hermansson, C. Holm, J. Jaafar, S. Hofmann, K.S. Jakob, H. Jung, V. Kapil, A.D. Kaplan, N. Karimitari, J.R. Kermode, N. Kroupa, J. Kullgren, M.C. Kuner, D. Kuryla, G. Liepuoniute, J.T. Margraf, I.-B. Magdau, A. Michaelides, J. Harry Moore, A.A. Naik, S.P. Niblett, S.W. Norwood, N. O'Neill, C. Ortner, K.A. Persson, K. Reuter, A.S. Rosen, L.L. Schaaf, C. Schran, B.X. Shi, E. Sivonxay, T.K. Stenczel, V. Svahn, C. Sutton, T.D. Swinburne, J. Tilly, C. van der Oord, E. Varga-Umbrich, T. Vegge, M. Vondrak, Y. Wang, W.C. Witt, F. Zills, G. Csanyi. arXiv:2401.00096 (2024). DOI: 10.48550/arXiv.2401.00096
  14. B. Deng, P. Zhong, K. Jun, J. Riebesell, K. Han, C.J. Bartel, G. Ceder. Nat. Mach. Intell., 5, 1031 (2023). DOI: 10.1038/s42256-023-00716-3
  15. C. Chen, S.P. Ong. Nature Comput. Sci., 2, 748 (2022). DOI: 10.1038/s43588-022-00349-3
  16. T. Wollschlager, N. Gao, B. Charpentier, M.A. Ketata, S. Gunnemann. ICML'23: Proceedings of the 40th International Conference on Machine Learning (Honolulu, Hawaii, USA, 2023), Art. N 1547, p. 37133-37156 (2023). https://dl.acm.org/doi/10.5555/3618408.3619955 [arXiv:2306.14916 (2023). DOI: 10.48550/arXiv.2306.14916]
  17. K.T. Schutt, H.E. Sauceda, P.-J. Kindermans, A. Tkatchenko, K.-R. Muller. J. Chem. Phys., 148, 241722 (2018). DOI: 10.1063/1.5019779
  18. K.T. Schutt, P. Kessel, M. Gastegger, K.A. Nicoli, A. Tkatchenko, K.-R. Muller. J. Chem. Theory Comput., 15 (1), 448 (2019). DOI: 10.1021/acs.jctc.8b00908
  19. K.T. Schutt, S.S.P. Hessmann, N.W.A. Gebauer, J. Lederer, M. Gastegger. J. Chem. Phys., 158 (14), 144801 (2023). DOI: 10.1063/5.0138367
  20. N.W.A. Gebauer, M. Gastegger, K.T. Schutt. Adv. Neural Information Process. Systems, 32 (2019). https://proceedings.neurips.cc/paper_files/paper/2019/file/ a4d8e2a7e0d0c102339f97716d2fdfb6-Paper.pdf [arXiv.1906.00957 (2020). DOI: 10.48550/arXiv.1906.00957]
  21. N.W.A. Gebauer, M. Gastegger, S.S.P. Hessmann, K.-R. Muller, K.T. Schutt. Nat. Commun., 13, 973 (2022). DOI: 10.1038/s41467-022-28526-y
  22. D.V. Shein, D.V. Zav'yalov, V.I. Konchenkov. Zh. Tekh. Fiz., 93 (12), 1732 (2023). DOI: 10.61011/JTF.2023.12.56806.f242-23
  23. D. Shein, D. Zav'yalov. Eur. Phys. J. Plus, 139, 863 (2024). DOI: 10.1140/epjp/s13360-024-05685-z
  24. D.V. Shein, D.V. Zav'yalov, D.N. Zharikov. Tezisy dokladov IX Mezhdunarodnoi molodezhnoi nauchnoi konferentsii "Fizika. Tekhnologii. Innovatsii" (Ekaterinburg, 2022), p. 330 (in Russian)
  25. Zh. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts, M.S. Lundstrom, P.D. Ye, X. Xu. Nat. Commun., 6, 8572 (2015). DOI: 10.1038/ncomms9572
  26. F.H. Stillinger, T.A. Weber. Phys. Rev. B, 31, 5262 (1985). DOI: 10.1103/physrevb.31.5262
  27. J.-W. Jiang. Nanotechnology, 26, 315706 (2015). DOI: 10.1088/0957-4484/26/31/315706
  28. J.-W. Jiang, T. Rabczuk, H.S. Park. Nanoscale, 7, 6059 (2015). DOI: 10.1039/c4nr07341j
  29. T. Liang, P. Zhang, P. Yuan, S. Zhai. Phys. Chem. Chem. Phys., 20, 21151 (2018). DOI: 10.1039/C8CP02831A
  30. S.-Q. LI, X. Liu, X. Wang, H. Liu, G. Zhang, J. Zhao, J. Gao. Small, 18, 2105130 (2022). DOI: 10.1002/smll.202105130
  31. F. Zhang, X. Zheng, H. Wang, L. Ding, G. Qin. Mater. Adv., 3, 5108 (2022). DOI: 10.1039/D2MA00407K
  32. V.L. Deringer, M.A. Caro, G. Csanyi. Nat. Commun., 11, 5461 (2020). DOI: 10.1038/s41467-020-19168-z
  33. A.P. Bartok, M.C. Payne, R. Kondor, G. Csanyi. Phys. Rev. Lett., 104, 136403 (2010). DOI: 10.1103/PhysRevLett.104.136403
  34. P. Ying, T. Liang, K. Xu, J. Xu, Zh. Fan, T. Ala-Nissila, Zh. Zhong. Int. J. Heat Mass Transf., 202, 123681 (2023). DOI: 10.1016/j.ijheatmasstransfer.2022.123681
  35. Z. Fan, Z. Zeng, C. Zhang, Y. Wang, K. Song, H. Dong, Y. Chen, T. Ala-Nissila. Phys. Rev. B, 104, 104309 (2021). DOI: 10.1103/PhysRevB.104.104309
  36. G. Qin, X. Zhang, Sh.-Y. Yue, Zh. Qin, H. Wang, Y. Han, M. Hu. Phys. Rev. B., 94, 165445 (2016). DOI: 10.1103/PhysRevB.94.165445
  37. K. Khrabrov, I. Shenbin, A. Ryabov, A. Tsypin, A. Telepov, A. Alekseev, A. Grishin, P. Strashnov, P. Zhilyaev, S. Nikolenko, A. Kadurin. Phys. Chem. Chem. Phys., 24, 25853 (2022). DOI: 10.1039/d2cp03966d

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru