Compact infrared radiation sources based on carbon nanotube films
Kitsyuk E.P.1, Sysa A.V.1,2, Kuksin A.V.3, Vasilevskaya Yu.O.1, Moiseev S.G.2, Shaman Yu.P.1,2
1Scientific-Manufacturing Complex «Technological Centre», Zelenograd, Moscow, Russia
2Ulyanovsk State University, Ulyanovsk, Russia
3Institute of Biomedical Systems, National Research University of Electronic Technology, MIET, Moscow, Zelenograd, Russia
Email: kitsyuk.e@gmail.com

PDF
Compact infrared radiation sources based on disordered carbon nanotube films were fabricated. The emission spectra of films based on single-walled (including those with characteristic metallic and semiconductor conductivity) and multi-walled carbon nanotubes were measured within the 3-10 μm wavelength interval at temperatures ranging from 150 oC to 400oC. The applicability of the manufactured radiation sources in measurements of transmission spectra of thin organic films is demonstrated. Keywords: separation, laser cutting, carbon nanotubes, gas sensor, infrared radiation.
  1. M.K. Rabchinskii, V.V. Sysoev, O.E. Glukhova, M. Brzhezinskaya, D.Yu. Stolyarova, A.S. Varezhnikov, M.A. Solomatin, P.V. Barkov, D.A. Kirilenko, S.I. Pavlov, M.V. Baidakova, V.V. Shnitov, N.S. Struchkov, D.Yu. Nefedov, A.O. Antonenko, P. Cai, Z. Liu, P.N. Brunkov. Adv. Mater. Technol., 7 (7), 2101250 (2022). DOI: 10.1002/admt.202101250
  2. Z. Meng, J. Zhuang, X. Xu, W. Hao, S.X. Dou, Y. Du. Adv. Mater. Interfaces, 5, 1800749 (2018). DOI: 10.1002/admi.201800749
  3. D. Fan, X. Yang, J. Liu, P. Zhou, X. Zhang. Compos. Commun., 27, 100887 (2021). DOI: 10.1016/j.coco.2021.100887
  4. X. Yang, J. Liu, D. Fan, J. Cao, X. Huang, Z. Zheng, X. Zhang. Chem. Eng. J., 389, 124448 (2020). DOI: 10.1016/j.cej.2020.124448
  5. W.C. Tan, K.-W. Ang. Adv. Electron. Mater., 7, 2001071 (2021). DOI: 10.1002/admt.202101250
  6. S. Orzechowska, A. Mazurek, R. Swis ocka, W. Lewandowski. Materials, 13, 80 (2020). DOI: 10.3390/ma13010080
  7. C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski, P. Samori. Chem. Soc. Rev., 47, 4860 (2018). DOI: 10.1039/C8CS00417J
  8. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov. Nat. Mater., 6, 652 (2007). DOI: 10.1038/nmat1967
  9. K. Deshmukh, T. Kovarik, S.K.K. Pasha. Coord. Chem. Rev., 424, 213514 (2020). DOI: 10.1016/j.ccr.2020.213514
  10. M. Donarelli, L. Ottaviano. Sensors, 18, 3638 (2018). DOI: 10.3390/s18113638
  11. N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O.N. Oliveira Jr., L. Lin. Microchim. Acta, 185, 213 (2018). DOI: 10.1007/s00604-018-2750-5
  12. R.A. Potyrailo, V.M. Mirsky. Chem. Inform., 39 (19), (2008). DOI: 10.1002/chin.200819271
  13. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson. Progr. Energy Combustion Sci., 60, 132 (2017). DOI: 10.1016/j.pecs.2016.12.002
  14. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, W. Schade. Opt. Lasers Engineer., 44 (7), 699 (2006). DOI: 10.1016/j.optlaseng.2005.04.015
  15. A. Schieweck, E. Uhde, T. Salthammer, L.C. Salthammer, L. Morawska, M. Mazaheri, P. Kumar. Renewable and Sustainable Energy Rev., 94, 705 (2018). DOI: 10.1016/j.rser.2018.05.057
  16. A. Ortiz Perez, B. Bierer, L. Scholz, J. Wollenstein, S. Palzer. Sensors, 18 (12), 43445 (2018). DOI: 10.3390/s18124345
  17. M. Metsala. J. Breath Research, 12 (2), 027104 (2018). DOI: 10.1088/1752-7163/aa8a31
  18. J. Hodgkinson, R.P. Tatam. Measurement Sci. Technol., 24 (1), 012004 (2012). DOI: 10.1088/0957-0233/24/1/012004
  19. H.-S.P. Wong, D. Akinwande. Carbon Nanotube and Graphene Device Physics (Cambridge University Press, 2010), DOI: 10.1017/CBO9780511778124
  20. Z.-P. Yang, L. Ci, J.A. Bur, S.-Y. Lin, P.M. Ajayan. Nano Lett., 8 (2), 446 (2008). DOI: 10.1021/nl072369t
  21. N. Li, H. Yuan, L. Xu, Y. Zeng, B. Qiang, Q.J. Wang, S. Zheng, H. Cai, L.Y.T. Lee, N. Singh, D. Zhao. Opt. Express, 29 (12), 19084 (2021). DOI: 10.1364/oe.422204
  22. D. Popa, R. Hopper, S.Z. Ali, M.T. Cole, Y. Fan, V.-P. Veigang-Radulescu, R. Chikkaraddy, J. Nallala, Y. Xing, J. Alexander-Webber, S. Hofmann, A. De Luca, J.W. Gardner, F. Udrea. Scientific Reports, 11 (1), 22915 (2021). DOI: 10.1038/s41598-021-02121-5
  23. L. Lai, P. Liu, D. Zhou, Q. Li, S. Fan, W. Lu. Adv. Functional Mater., 33 (4), 2208891 (2023). DOI: 10.1002/adfm.202208891
  24. H. Liu, D. Nishide, T. Tanaka, H. Kataura. Nature Commun., 2 (1), 309 (2011). DOI: 10.1038/ncomms1313
  25. A.A. Pavlov, A.V. Sysa, Yu.P. Shaman, M.I. Bazarova, I.M. Gavrilin, A.A. Polokhin. Russ. Microelectron., 46 (2), 82 (2017). DOI: 10.1134/s1063739717020068
  26. N.P. Bogorodskii, V.V. Pasynkov, B.M. Tareev. Elektrotekhnicheskie materialy (Energoatomizdat, L., 1985) (in Russian)
  27. L.A. Novitskii, I.G. Kozhevnikov. Teplofizicheskie svoistva materialov pri nizkikh temperaturakh (Mashinostroenie, M.,1975) (in Russian)
  28. Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura. J. Phys. Chem. C, 112 (34), 13187 (2008). DOI: 10.1021/jp804006f
  29. K. Oi, J. Komoto, T. Kawai, Y. Nonoguchi. Synthetic Metals, 282, 116958 (2021). DOI: 10.1016/j.synthmet.2021.116958
  30. M.R. Predtechenskiy, A.A. Khasin, A.E. Bezrodny, O.F. Bobrenok, D.Yu. Dubov, V.E. Muradyan, V.O. Saik, S.N. Smirnov. Carbon Trends, 8, 100175 (2022). DOI: 10.1016/j.cartre.2022.100175
  31. A. Yaya, C.P. Ewels, Ph. Wagner, I. Suarez-Martinez, A.G. Tekley, L.R. Jensen. Europ. Phys. J. Appl. Phys., 54 (1), 10401 (2011). DOI: 10.1051/epjap/2011100482
  32. L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, E.J. Mittemeijer. Thin Solid Films, 418 (2), 89 (2002). DOI: 10.1016/s0040-6090(02)00787-3

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru