Nonlinear optical properties of single-wall carbon nanotubes for photonics applications
Vasilevsky P. N. 1,2, Savelyev M. S. 1,2,3, Orlov A. P. 2,4, Gerasimenko A. Yu. 1,2,3
1Institute of Biomedical Systems, National Research University of Electronic Technology, MIET, Moscow, Zelenograd, Russia
2Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Moscow, Russia
3Institute for Bionic Technologies and Engineering, Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
4Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Email: pavelvasilevs@yandex.ru

PDF
The paper studies the nonlinear optical properties of liquid dispersed media with single-wall carbon nanotubes, which manifest themselves when exposed to laser radiation with different parameters, such as energy exposure, duration and pulse repetition rate. The structural properties of the materials under study are studied using Raman scattering, spectroscopy and dynamic light scattering. When exposed to single nanosecond pulses, nonlinear limitation of radiation is recorded, which leads to a sharp decrease in transmission and a decrease in the duration of the pulse passed through the medium. When exposed to femtosecond laser pulses with a high repetition rate (80 MHz), modulation of the spatial shape of the beam is observed due to a change in the refractive index of the medium. It is shown that dispersed media in dimethylformamide exhibit a greater nonlinear optical response in comparison with aqueous media. The authors also demonstrated the possibility of using dispersed media with single-wall carbon nanotubes as laser radiation intensity limiters to protect light-sensitive matrices of optical devices, as well as nonlinear optical switches in optical systems for signal control. Keywords: single-wall carbon nanotubes, dispersed media, laser radiation, optical limiting, optical switches.
  1. Y.C. Shin, B. Wu, S. Lei, G.J. Cheng, Y. Lawrence. Int. J. Manuf. Eng., 142 (11), 110818 (2020). DOI: 10.1115/1.4048397
  2. R.M. Ma, R.F. Oulton. Nat. Nanotechnol., 14 (1), 12 (2019). DOI: 10.1038/s41565-018-0320-y
  3. X. Wang, Y. Cui, T. Li, M. Lei, J. Li, Z. Wei. Adv. Opt. Mater., 7 (3), 1801274 (2019). DOI: 10.1002/adom.201801274
  4. N. Li, C.P. Ho, J. Xue, L.W. Lim, G. Chen, Y.H. Fu, L.Y.T. Lee. Laser Photon. Rev., 16 (11), 2100511 (2022). DOI: 10.1002/lpor.202100511
  5. P. Dong, Y.K. Chen, G.H. Duan, D.T. Neilson. Nanophotonics, 3 (4-5), 215 (2014). DOI: 10.1515/nanoph-2013-0023
  6. P. Trocha, D. Ganin, M. Karpov, M.H.P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T.J. Kippenberg, C. Koos. Science, 359 (6378), 887 (2018). DOI: 10.1126/science.aao3924
  7. G.H. Lee, H. Moon, H. Kim, G.H. Lee, W. Kwon, S. Yoo, D. Myung, S.H. Yun, Z. Bao, S.K. Hahn. Nat. Rev. Mater., 5 (2), 149 (2020). DOI: 10.1038/s41578-019-0167-3
  8. J. Wu, J. Peng, B. Liu, T. Pan, H. Zhou, J. Mao, Y. Yang, C. Qiu, Y. Su. Opt. Commun., 373, 44 (2016). DOI: 10.1016/j.optcom.2015.07.045
  9. L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, H. Zhang. Adv. Mater., 31 (14), 1807981 (2019). DOI: 10.1002/adma.201807981
  10. D. Dai. Proc. IEEE, 106 (12), 2117 (2018). DOI: 10.1109/JPROC.2018.2822787
  11. S. Fathpour. IEEE J. Quant. Electron., 54 (6), 1 (2018). DOI: 10.1109/JQE.2018.2876903
  12. T.C. Wei, S. Mokkapati, T.Y. Li, C.H. Lin, G.R. Lin, C. Jagadish, J.H. He. Adv. Funct. Mater., 28 (18), 1707175 (2018). DOI: 10.1002/adfm.201707175
  13. D. Dini, M.J.F. Calvete, M. Hanack. Chem. Rev., 116 (22), 13043 (2016). DOI: 10.1021/acs.chemrev.6b00033
  14. P. Kabacinski, T.M. Kardas, Y. Stepanenko, C. Radzewicz. Opt. Express, 27 (8), 11018 (2019). DOI: 10.1364/OE.27.011018
  15. P. Khan, R.K. Yadav, A. Mondal, C.S. Rout, K.V. Adarsh. Opt. Mater., 120, 111459 (2021). DOI: 10.1016/j.optmat.2021.111459
  16. S. Pascal, S. David, C. Andraud, O. Maury. Chem. Soc. Rev., 50 (11), 6613 (2021). DOI: 10.1039/D0CS01221A
  17. M.S. Savelyev, P.N. Vasilevsky, Yu.P. Shaman, A.Yu. Tolbin, A.Yu. Gerasimenko, S.V. Selishchev. Tech. Phys., 68 (4), 476 (2023). DOI: 10.21883/TP.2023.04.55939.281-22
  18. L. Wu, X. Jiang, J. Zhao, W. Liang, Z. Li, W. Huang, Z. Lin, Y. Wang, F. Zhang, S. Lu, Y. Xiang, S. Xu, J. Li, H. Zhang. Laser Photon. Rev., 12 (12), 1800215 (2018). DOI: 10.1002/lpor.201800215
  19. J. Wang, Y. Chen, W.J. Blau. J. Mater. Chem., 19 (40), 7425 (2009). DOI: 10.1039/B906294G
  20. P.N. Vasilevsky, M.S. Savelyev, A.Yu. Tolbin, A.V. Kuksin, Y.O. Vasilevskaya, A.P. Orlov, Y.P. Shaman, A.A. Dudin, A.A. Pavlov, A.Yu. Gerasimenko. Photonics, 10 (5), 537 (2023). DOI: 10.3390/photonics10050537
  21. W.B. Cho, J.H. Yim, S.Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, F. Rotermund. Adv. Funct. Mater., 20 (12), 1937 (2010). DOI: 10.1002/adfm.200902368
  22. S. Berciaud, L. Cognet, P. Poulin, R.B. Weisman, B. Lounis. Nano Lett., 7 (5), 1203 (2007). DOI: 10.1021/nl062933k
  23. S.A. Tereshchenko, M.S. Savelyev, V.M. Podgaetsky, A.Yu. Gerasimenko, S.V. Selishchev. J. Appl. Phys., 120 (9), 093109 (2016). DOI: 10.1063/1.4962199
  24. M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley. Science, 297 (5581), 593 (2002). DOI: 10.1126/science.1072631
  25. A.G. Ryabenko, T.V. Dorofeeva, G.I. Zvereva. Carbon, 42, 1523 (2004). DOI: 10.1016/j.carbon.2004.02.005
  26. S.D. Shandakov, M.V. Lomakin, A.G. Nasibulin. Tech. Phys. Lett., 42 (11), 1071 (2016). DOI: 10.1134/S1063785016110080
  27. B. Anand, S.A. Ntim, V.S. Muthukumar, S.S.S. Sai, R. Philip, S. Mitra. Carbon, 49 (14), 4767 (2011). DOI: 10.1016/j.carbon.2011.06.086
  28. J. Shi, H. Chu, Y. Li, X. Zhang, H. Pan, D. Li. Nanoscale, 11 (15), 7287 (2019). DOI: 10.1039/C8NR10174D
  29. Y. Chen, Y. Lin, Y. Liu, J. Doyle, N. He, X. Zhuang, J. Bai, W.J. Blau. J. Nanosci. Nanotechnol., 7 (4-5), 1268 (2007). DOI: 10.1166/jnn.2007.308
  30. S. Rahman, S. Mirza, A. Sarkar, G.W. Rayfield. J. Nanosci. Nanotechnol., 10 (8), 4805 (2010). DOI: 10.1166/jnn.2010.2746
  31. K. Mansour, M.J. Soileau, E.W. Van Stryland. JOSA B, 9 (7), 1100 (1992). DOI: 10.1364/JOSAB.9.001100
  32. M.S. Savelyev, A.Y. Gerasimenko, P.N. Vasilevsky, Y.O. Fedorova, T. Groth, G.N. Ten, D.V. Telyshev. Anal. Biochem., 598, 113710 (2020). DOI: 10.1016/j.ab.2020.113710
  33. Y. Liao, C. Song, Y. Xiang, X. Dai. Ann. Phys., 532 (12), 2000322 (2020). DOI: 10.1002/andp.202000322
  34. Y. Shi, Y. Gao, Y. Hu, Y. Xue, G. Rui, L. Ye, B. Gu. Opt. Lasers Eng., 158, 107168 (2022). DOI: 10.1016/j.optlaseng.2022.107168

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru