Nonlinear optical properties of single-wall carbon nanotubes for photonics applications
Vasilevsky P. N.
1,2, Savelyev M. S.
1,2,3, Orlov A. P.
2,4, Gerasimenko A. Yu.
1,2,31Institute of Biomedical Systems, National Research University of Electronic Technology, MIET, Moscow, Zelenograd, Russia
2Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Moscow, Russia
3Institute for Bionic Technologies and Engineering, Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
4Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Email: pavelvasilevs@yandex.ru
The paper studies the nonlinear optical properties of liquid dispersed media with single-wall carbon nanotubes, which manifest themselves when exposed to laser radiation with different parameters, such as energy exposure, duration and pulse repetition rate. The structural properties of the materials under study are studied using Raman scattering, spectroscopy and dynamic light scattering. When exposed to single nanosecond pulses, nonlinear limitation of radiation is recorded, which leads to a sharp decrease in transmission and a decrease in the duration of the pulse passed through the medium. When exposed to femtosecond laser pulses with a high repetition rate (80 MHz), modulation of the spatial shape of the beam is observed due to a change in the refractive index of the medium. It is shown that dispersed media in dimethylformamide exhibit a greater nonlinear optical response in comparison with aqueous media. The authors also demonstrated the possibility of using dispersed media with single-wall carbon nanotubes as laser radiation intensity limiters to protect light-sensitive matrices of optical devices, as well as nonlinear optical switches in optical systems for signal control. Keywords: single-wall carbon nanotubes, dispersed media, laser radiation, optical limiting, optical switches.
- Y.C. Shin, B. Wu, S. Lei, G.J. Cheng, Y. Lawrence. Int. J. Manuf. Eng., 142 (11), 110818 (2020). DOI: 10.1115/1.4048397
- R.M. Ma, R.F. Oulton. Nat. Nanotechnol., 14 (1), 12 (2019). DOI: 10.1038/s41565-018-0320-y
- X. Wang, Y. Cui, T. Li, M. Lei, J. Li, Z. Wei. Adv. Opt. Mater., 7 (3), 1801274 (2019). DOI: 10.1002/adom.201801274
- N. Li, C.P. Ho, J. Xue, L.W. Lim, G. Chen, Y.H. Fu, L.Y.T. Lee. Laser Photon. Rev., 16 (11), 2100511 (2022). DOI: 10.1002/lpor.202100511
- P. Dong, Y.K. Chen, G.H. Duan, D.T. Neilson. Nanophotonics, 3 (4-5), 215 (2014). DOI: 10.1515/nanoph-2013-0023
- P. Trocha, D. Ganin, M. Karpov, M.H.P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T.J. Kippenberg, C. Koos. Science, 359 (6378), 887 (2018). DOI: 10.1126/science.aao3924
- G.H. Lee, H. Moon, H. Kim, G.H. Lee, W. Kwon, S. Yoo, D. Myung, S.H. Yun, Z. Bao, S.K. Hahn. Nat. Rev. Mater., 5 (2), 149 (2020). DOI: 10.1038/s41578-019-0167-3
- J. Wu, J. Peng, B. Liu, T. Pan, H. Zhou, J. Mao, Y. Yang, C. Qiu, Y. Su. Opt. Commun., 373, 44 (2016). DOI: 10.1016/j.optcom.2015.07.045
- L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, H. Zhang. Adv. Mater., 31 (14), 1807981 (2019). DOI: 10.1002/adma.201807981
- D. Dai. Proc. IEEE, 106 (12), 2117 (2018). DOI: 10.1109/JPROC.2018.2822787
- S. Fathpour. IEEE J. Quant. Electron., 54 (6), 1 (2018). DOI: 10.1109/JQE.2018.2876903
- T.C. Wei, S. Mokkapati, T.Y. Li, C.H. Lin, G.R. Lin, C. Jagadish, J.H. He. Adv. Funct. Mater., 28 (18), 1707175 (2018). DOI: 10.1002/adfm.201707175
- D. Dini, M.J.F. Calvete, M. Hanack. Chem. Rev., 116 (22), 13043 (2016). DOI: 10.1021/acs.chemrev.6b00033
- P. Kabacinski, T.M. Kardas, Y. Stepanenko, C. Radzewicz. Opt. Express, 27 (8), 11018 (2019). DOI: 10.1364/OE.27.011018
- P. Khan, R.K. Yadav, A. Mondal, C.S. Rout, K.V. Adarsh. Opt. Mater., 120, 111459 (2021). DOI: 10.1016/j.optmat.2021.111459
- S. Pascal, S. David, C. Andraud, O. Maury. Chem. Soc. Rev., 50 (11), 6613 (2021). DOI: 10.1039/D0CS01221A
- M.S. Savelyev, P.N. Vasilevsky, Yu.P. Shaman, A.Yu. Tolbin, A.Yu. Gerasimenko, S.V. Selishchev. Tech. Phys., 68 (4), 476 (2023). DOI: 10.21883/TP.2023.04.55939.281-22
- L. Wu, X. Jiang, J. Zhao, W. Liang, Z. Li, W. Huang, Z. Lin, Y. Wang, F. Zhang, S. Lu, Y. Xiang, S. Xu, J. Li, H. Zhang. Laser Photon. Rev., 12 (12), 1800215 (2018). DOI: 10.1002/lpor.201800215
- J. Wang, Y. Chen, W.J. Blau. J. Mater. Chem., 19 (40), 7425 (2009). DOI: 10.1039/B906294G
- P.N. Vasilevsky, M.S. Savelyev, A.Yu. Tolbin, A.V. Kuksin, Y.O. Vasilevskaya, A.P. Orlov, Y.P. Shaman, A.A. Dudin, A.A. Pavlov, A.Yu. Gerasimenko. Photonics, 10 (5), 537 (2023). DOI: 10.3390/photonics10050537
- W.B. Cho, J.H. Yim, S.Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, F. Rotermund. Adv. Funct. Mater., 20 (12), 1937 (2010). DOI: 10.1002/adfm.200902368
- S. Berciaud, L. Cognet, P. Poulin, R.B. Weisman, B. Lounis. Nano Lett., 7 (5), 1203 (2007). DOI: 10.1021/nl062933k
- S.A. Tereshchenko, M.S. Savelyev, V.M. Podgaetsky, A.Yu. Gerasimenko, S.V. Selishchev. J. Appl. Phys., 120 (9), 093109 (2016). DOI: 10.1063/1.4962199
- M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley. Science, 297 (5581), 593 (2002). DOI: 10.1126/science.1072631
- A.G. Ryabenko, T.V. Dorofeeva, G.I. Zvereva. Carbon, 42, 1523 (2004). DOI: 10.1016/j.carbon.2004.02.005
- S.D. Shandakov, M.V. Lomakin, A.G. Nasibulin. Tech. Phys. Lett., 42 (11), 1071 (2016). DOI: 10.1134/S1063785016110080
- B. Anand, S.A. Ntim, V.S. Muthukumar, S.S.S. Sai, R. Philip, S. Mitra. Carbon, 49 (14), 4767 (2011). DOI: 10.1016/j.carbon.2011.06.086
- J. Shi, H. Chu, Y. Li, X. Zhang, H. Pan, D. Li. Nanoscale, 11 (15), 7287 (2019). DOI: 10.1039/C8NR10174D
- Y. Chen, Y. Lin, Y. Liu, J. Doyle, N. He, X. Zhuang, J. Bai, W.J. Blau. J. Nanosci. Nanotechnol., 7 (4-5), 1268 (2007). DOI: 10.1166/jnn.2007.308
- S. Rahman, S. Mirza, A. Sarkar, G.W. Rayfield. J. Nanosci. Nanotechnol., 10 (8), 4805 (2010). DOI: 10.1166/jnn.2010.2746
- K. Mansour, M.J. Soileau, E.W. Van Stryland. JOSA B, 9 (7), 1100 (1992). DOI: 10.1364/JOSAB.9.001100
- M.S. Savelyev, A.Y. Gerasimenko, P.N. Vasilevsky, Y.O. Fedorova, T. Groth, G.N. Ten, D.V. Telyshev. Anal. Biochem., 598, 113710 (2020). DOI: 10.1016/j.ab.2020.113710
- Y. Liao, C. Song, Y. Xiang, X. Dai. Ann. Phys., 532 (12), 2000322 (2020). DOI: 10.1002/andp.202000322
- Y. Shi, Y. Gao, Y. Hu, Y. Xue, G. Rui, L. Ye, B. Gu. Opt. Lasers Eng., 158, 107168 (2022). DOI: 10.1016/j.optlaseng.2022.107168
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.