Study of PET substrate wetting by multicomponent graphene oxide suspensions
Gushchin A.V.1, Dinkova E.N.1, Rayanova K.A.1, Salitrinnik L.I.1, Trukhanova M.I.2,3, Komarov I.A.1,4
1Moscow Polytechnic University, Moscow, Russia
2Lomonosov Moscow State University, Moscow, Russia
3NUCLEAR SAFETY INSTITUTE OF THE RUSSIAN ACADEMY OF SCIENCES, Moscow, Russia
4Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
Email: master_kom@mail.com

PDF
The features of wetting of polymer PET substrates by multicomponent graphene oxide suspensions were studied. The possibility of improving the wetting of PET substrates by introducing additional organic components into commercially available graphene oxide suspensions was examined. N-Methylpyrrolidone, dimethylacetamide, and two types of enamel paint thinners were used as additional components. The wetting angle was reduced successfully in all cases. The drying time of droplets of multicomponent suspensions was also analyzed. Depending on the ratio of components and the type of dispersion medium, the drying time may vary by a factor of 3-40, which has a significant influence on the applicability of suspensions in aerosol deposition and centrifugation processes. The suspensions with n-methylpyrrolidone and dimethylacetamide remained stable for more than 2 months, and a stability period of approximately 1.5 months was demonstrated for the suspension with an enamel paint thinner. Keywords: graphene oxide, dispersion medium, organic thinner, n-methylpyrrolidone, dimethylacetamide, PET substrate, wetting angle.
  1. L. Li, L. Han, H. Hu, R. Zhang. Mater. Adv., 4, 726 (2023). DOI: 10.1039/D2MA00940D
  2. C.S. Buga, J.C. Viana. Adv. Mater. Technol., 6 (6), 2001016 (2021). DOI: 10.1002/admt.202001016
  3. A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim, S. Ji, J.-H. Ahn. Chem. Rev., 124, 318 (2024). DOI: 10.1021/acs.chemrev.3c00302
  4. Q. Song, Q. Zhao. Appl. Sci., 14, 4279 (2024). DOI: 10.3390/app14104279
  5. A.J. Khan, M. Hanif, M.S. Javed, S. Hussain, Z. Liu. J. Mater. Sci.: Mater. Electron., 30, 8568 (2019). DOI: 10.1007/s10854-019-01177-4
  6. I.V. Novikov, N.I. Raginov, D.V. Krasnikov, S.S. Zhukov, K.V. Zhivetev, A.V. Terentiev, D.A. Ilatovskii, A. Elakshar, E.M. Khabushev, A.K. Grebenko, S.A. Kuznetsov, S.D. Shandakov, B.P. Gorshunov, A.G. Nasibulin. Chem. Eng. J., 485, 149733 (2024). DOI: 10.1016/j.cej.2024.149733
  7. Y. Chendake, H. Mhetre, S. Khatavkar, V. Mehtre, S. Namekar, V. Kaduskar, P. Chougule. Graphene: A Promising Material for Flexible Electronic Devices. Recent Advances in Graphene Nanophotonics (Springer Nature, 2023), p. 83-118. DOI: 10.1007/978-3-031-28942-2
  8. H. Chen, F. Zhuo, J. Zhou, Y. Liu, J. Zhang, S. Dong, X. Liu, A. Elmarakbi, H. Duan, Y. Fu. Chem. Eng. J., 464, 142576 (2023). DOI: 10.1016/j.cej.2023.142576
  9. Q. Zhang, W. Hu, H. Sirringhaus, K. Mullen. Adv. Mater., Special Issue: Organic Semicond., 34 (22), 2108701 (2022). DOI: 10.1002/adma.202108701
  10. H. Zhang, G. Zhao, Y. Tong, Q. Tang, Y. Liu. Scientia Sinica Chim., 54|,(4), 406 (2024). DOI: 10.1360/SSC-2024-0006
  11. K.A. Shiyanova, M.V. Gudkov, M.K. Rabchinskii, L.A. Sokura, D.Y. Stolyarova, M.V. Baidakova, D.P. Shashkin, A.D. Trofimuk, D.A. Smirnov, I.A. Komarov, V.A. Timofeeva, V.P. Melnikov. Nanomaterials, 11 (4), 915 (2021). DOI: 10.3390/nano11040915
  12. A. Rowley, Y. Stehle, L. Kilby, C. Bashant. J. Carbon Research, 9 (3), 74 (2023). DOI: 10.3390/c9030074
  13. X. Chen, Z. Qu, Z. Liu, G. Ren. ACS Omega, 7 (27), 23503 (2022). DOI: 10.1021/acsomega.2c01963
  14. M. Abdollahi, M. Doostmohammadi, A.Z. Moshfegh. Carbon, 126, 30 (2018). DOI: 10.1016/j.carbon.2017.09.091
  15. N. Hu, J. Li, S. Zhao, L. Zhang, W. Xu, P.K. Chu. J. Mater. Sci., 49 (4), 1661 (2014). DOI: 10.1007/s10853-014-8270-0
  16. A.A. Moosa, M.S. Abed. Turk. J. Chem., 45 (3), 493 (2021). DOI: 10.3906/kim-2101-19
  17. Y.J. Kim, Y.H. Kahng, Y.-H. Hwang, S.M. Lee, S.-Y. Lee, H.-R. Lee, S.H. Lee, S.H. Nam, W.B. Kim, K. Lee. Mater. Res. Express, 3 (10), 105033 (2016). DOI: 10.1088/2053-1591/3/10/105033
  18. A. Jivrckova, O. Jankovsky, Z. Sofer, D. Sedmidubsky. Materials, 15 (3), 920 (2022). DOI: 10.3390/ma15030920
  19. T.F. Emiru, D.W. Ayele. Egypt. J. Basic Appl. Sci., 4 (1), 74 (2017). DOI: 10.1016/j.ejbas.2016.11.002
  20. F. Liu, C. Wang, X. Sui, M.A. Riaz, M. Xu, L. Wei, Y. Chen. Carbon Energy, 1 (2), 173 (2019). DOI: 10.1002/cey2.14
  21. A. Loudiki, M. Matrouf, M. Azriouil, A. Farahi, S. Lahrich, M. Bakasse, M.A. El Mhammedi. Appl. Surf. Sci. Adv., 7, 100195 (2022). DOI: 10.1016/j.apsadv.2021.100195
  22. V. Periasamy, M.M. Jaafar, K. Chandrasekaran, S. Talebi, F.L. Ng, S.M. Phang, G.G. Kumar, M. Iwamoto. Nanomaterials (Basel), 12 (5), 840 (2022). DOI: 10.3390/nano12050840
  23. A. Holm, C.J. Wrasman, K.-C. Kao, A.R. Riscoe, M. Cargnello, C.W. Frank. Langmuir, 34 (33), 9683 (2018). DOI: 10.1021/acs.langmuir.8b00777
  24. O.N. Oliveira Jr., L. Caseli, K. Ariga. Chem. Rev., 122 (6), 6459 (2022). DOI: 10.1021/acs.chemrev.1c00754
  25. J. Kim, S. Park, M. Choi, S. Kim, J. Heo, E. Yeom, S. Kim, H. Lee, S. Kim. Diamond and Related Mater., 139, 110327 (2023). DOI: 10.1016/j.diamond.2023.110327
  26. N. Murugesan, S. Suresh, M. Kandasamy, S. Murugesan, N. Pugazhenthiran, V. Prasanna Venkatesh, B.K. Balachandar, S.K. Kumar, M.N.M. Ansari. Physica B: Condensed Matter., 669, 415288 (2023). DOI: 10.1016/j.physb.2023.415288
  27. K. Zhou, C. Guo, F. Gan, J.H. Xin, H. Yu. J. Colloid Interface Sci., 640, 261 (2023). DOI: 10.1016/j.jcis.2023.02.107
  28. N.S. Struchkov, E.V. Alexandrov, A.V. Romashkin, G.O. Silakov, M.K. Rabchinskii. Fullerenes, Nanotubes and Carbon Nanostructures, 28, 214 (2020). DOI: 10.1080/1536383X.2019.1686623
  29. C. Wang, M.J. Park, D.H. Seo, H.K. Shon. Separation and Purification Technol., 254, 117604 (2020). DOI: 10.1016/j.seppur.2020.117604
  30. S.-Y. Kim, H.-E. Gang, G.-T. Park, H.-B. Jeon, Y.G. Jeong. Results Phys., 24, 104107 (2021). DOI: 10.1016/j.rinp.2021.104107
  31. X. Wang, R.A. Paredes Camacho, X. Xu, Y. Wang, Y. Qiang, H. Kungl, R.-A. Eichel, Y. Zhang, L. Lu. Nano Mater. Sci., 6 (1), 24 (2024). DOI: 10.1016/j.nanoms.2023.11.002
  32. A. Silvestri, A. Criado, F. Poletti, F. Wang, P. Fanjul-Bolado, M.B. Gonzalez-Garci a, C. Garci a-Astrain, L.M. Liz-Marzan, X. Feng, C. Zanardi, M. Prato. Adv. Functional Mater., 32 (2), 2105028 (2022). DOI: 10.1002/adfm.202105028
  33. S. Guo, J. Chen, Y. Zhang, J. Liu. Nanomaterials, 11, 2539 (2021). DOI: 10.3390/nano11102539
  34. N. Al-Azzam, A. Alazzam. PLoS ONE, 17 (6), e0269914 (2022). DOI: 10.1371/journal.pone.0269914
  35. A. Cammarano, G. De Luca, E. Amendola. Cent. Eur. J. Chem., 11 (1), 35 (2013). DOI: 10.2478/s11532-012-0135-x
  36. S. Kim, R.A.R. Bowen, R.N. Zare. ACS Appl. Mater. Interfaces, 7, 1925 (2015). DOI: 10.1021/am507606r
  37. J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascon. Langmuir, 24, 10560 (2008). DOI: 10.1021/la801744a
  38. M.S. Khan, A. Shakoor, G.T. Khan, S. Sultana A. Zia. J. Chem. Soc. Pak., 37 (01), 62 (2015)
  39. B.-B. Feng, Z.-H. Wang, W.-H. Suo, Yi. Wang, J.-C. Wen, Y.-F. Li, H.-L. Suo, M. Liu, L. Ma. Mater. Res. Express, 7, 095009 (2020). DOI: 10.1088/2053-1591/abb2ca
  40. D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis. J. Colloid Interface Sci., 430, 108 (2014). DOI: 10.1016/j.jcis.2014.05.033
  41. D.W. Johnson, B.P. Dobson, K.S. Coleman. Current Opinion Colloid Interface Sci., 20, 367 (2015). DOI: 10.1016/j.cocis.2015.11.004
  42. I.A. Komarov, E.N. Rubtsova, A.S. Lapashina, A.V. Golovin, I.I. Bobrinetskiy. Biomed. Eng., 51, 377 (2018). DOI: 10.1007/s10527-018-9753-8
  43. F.D. Vasileva, A.N. Kapitonov, A.E. Tomskaya, S.A. Smagulova. J. Structural Chem., 59 (4), 823 (2018). DOI: 10.1134/s002247661804011x
  44. S. Vafaei, T. Borca-Tasciuc, M.Z. Podowski, A. Purkayastha, G. Ramanath, P.M. Ajayan. Nanotechnology, 17, 2523 (2006). DOI: 10.1088/0957-4484/17/10/014
  45. J. Chinnam, D. Das, R. Vajjha, J. Satti. Interna. Commun. Heat Mass Transfer, 62, 1 (2015). DOI: 10.1016/j.icheatmasstransfer.2014.12.009
  46. A.C. Sparavigna. Graphene and Graphene Oxide ( Raman Spectroscopy) (ChemRxiv, 2024). DOI: 10.26434/chemrxiv-2024-86stv-v2
  47. V. Scardaci, G. Compagnini. Data in Brief, 38, 107306 (2021). DOI: 10.1016/j.dib.2021.107306
  48. R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, G. Gryglewicz. Materials, 11 (7), 1050 (2018). DOI: 10.3390/ma11071050
  49. L. Qian, A.R. Thiruppathi, R. Elmahdy, J. Van der Zalm, A. Chen. Sensors, 20 (5), 1252 (2020). DOI: 10.3390/s20051252
  50. C.K. Chua, M. Pumera. Small, 11 (11), 1266 (2015). DOI: 10.1002/smll.201400154
  51. G. Sadovska, P. Honcova, J. Moravkova, I. Jirka, M. Vorokhta, R. Pilavr, J. Rathousky, D. Kaucky, E. Mikyskova, P. Sazama. Carbon, 206, 211 (2023). DOI: 10.1016/j.carbon.2023.02.042

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru