Gushchin A.V.1, Dinkova E.N.1, Rayanova K.A.1, Salitrinnik L.I.1, Trukhanova M.I.2,3, Komarov I.A.1,4
1Moscow Polytechnic University, Moscow, Russia
2Lomonosov Moscow State University, Moscow, Russia
3NUCLEAR SAFETY INSTITUTE OF THE RUSSIAN ACADEMY OF SCIENCES, Moscow, Russia
4Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
Email: master_kom@mail.com
The features of wetting of polymer PET substrates by multicomponent graphene oxide suspensions were studied. The possibility of improving the wetting of PET substrates by introducing additional organic components into commercially available graphene oxide suspensions was examined. N-Methylpyrrolidone, dimethylacetamide, and two types of enamel paint thinners were used as additional components. The wetting angle was reduced successfully in all cases. The drying time of droplets of multicomponent suspensions was also analyzed. Depending on the ratio of components and the type of dispersion medium, the drying time may vary by a factor of 3-40, which has a significant influence on the applicability of suspensions in aerosol deposition and centrifugation processes. The suspensions with n-methylpyrrolidone and dimethylacetamide remained stable for more than 2 months, and a stability period of approximately 1.5 months was demonstrated for the suspension with an enamel paint thinner. Keywords: graphene oxide, dispersion medium, organic thinner, n-methylpyrrolidone, dimethylacetamide, PET substrate, wetting angle.
- L. Li, L. Han, H. Hu, R. Zhang. Mater. Adv., 4, 726 (2023). DOI: 10.1039/D2MA00940D
- C.S. Buga, J.C. Viana. Adv. Mater. Technol., 6 (6), 2001016 (2021). DOI: 10.1002/admt.202001016
- A.K. Katiyar, A.T. Hoang, D. Xu, J. Hong, B.J. Kim, S. Ji, J.-H. Ahn. Chem. Rev., 124, 318 (2024). DOI: 10.1021/acs.chemrev.3c00302
- Q. Song, Q. Zhao. Appl. Sci., 14, 4279 (2024). DOI: 10.3390/app14104279
- A.J. Khan, M. Hanif, M.S. Javed, S. Hussain, Z. Liu. J. Mater. Sci.: Mater. Electron., 30, 8568 (2019). DOI: 10.1007/s10854-019-01177-4
- I.V. Novikov, N.I. Raginov, D.V. Krasnikov, S.S. Zhukov, K.V. Zhivetev, A.V. Terentiev, D.A. Ilatovskii, A. Elakshar, E.M. Khabushev, A.K. Grebenko, S.A. Kuznetsov, S.D. Shandakov, B.P. Gorshunov, A.G. Nasibulin. Chem. Eng. J., 485, 149733 (2024). DOI: 10.1016/j.cej.2024.149733
- Y. Chendake, H. Mhetre, S. Khatavkar, V. Mehtre, S. Namekar, V. Kaduskar, P. Chougule. Graphene: A Promising Material for Flexible Electronic Devices. Recent Advances in Graphene Nanophotonics (Springer Nature, 2023), p. 83-118. DOI: 10.1007/978-3-031-28942-2
- H. Chen, F. Zhuo, J. Zhou, Y. Liu, J. Zhang, S. Dong, X. Liu, A. Elmarakbi, H. Duan, Y. Fu. Chem. Eng. J., 464, 142576 (2023). DOI: 10.1016/j.cej.2023.142576
- Q. Zhang, W. Hu, H. Sirringhaus, K. Mullen. Adv. Mater., Special Issue: Organic Semicond., 34 (22), 2108701 (2022). DOI: 10.1002/adma.202108701
- H. Zhang, G. Zhao, Y. Tong, Q. Tang, Y. Liu. Scientia Sinica Chim., 54|,(4), 406 (2024). DOI: 10.1360/SSC-2024-0006
- K.A. Shiyanova, M.V. Gudkov, M.K. Rabchinskii, L.A. Sokura, D.Y. Stolyarova, M.V. Baidakova, D.P. Shashkin, A.D. Trofimuk, D.A. Smirnov, I.A. Komarov, V.A. Timofeeva, V.P. Melnikov. Nanomaterials, 11 (4), 915 (2021). DOI: 10.3390/nano11040915
- A. Rowley, Y. Stehle, L. Kilby, C. Bashant. J. Carbon Research, 9 (3), 74 (2023). DOI: 10.3390/c9030074
- X. Chen, Z. Qu, Z. Liu, G. Ren. ACS Omega, 7 (27), 23503 (2022). DOI: 10.1021/acsomega.2c01963
- M. Abdollahi, M. Doostmohammadi, A.Z. Moshfegh. Carbon, 126, 30 (2018). DOI: 10.1016/j.carbon.2017.09.091
- N. Hu, J. Li, S. Zhao, L. Zhang, W. Xu, P.K. Chu. J. Mater. Sci., 49 (4), 1661 (2014). DOI: 10.1007/s10853-014-8270-0
- A.A. Moosa, M.S. Abed. Turk. J. Chem., 45 (3), 493 (2021). DOI: 10.3906/kim-2101-19
- Y.J. Kim, Y.H. Kahng, Y.-H. Hwang, S.M. Lee, S.-Y. Lee, H.-R. Lee, S.H. Lee, S.H. Nam, W.B. Kim, K. Lee. Mater. Res. Express, 3 (10), 105033 (2016). DOI: 10.1088/2053-1591/3/10/105033
- A. Jivrckova, O. Jankovsky, Z. Sofer, D. Sedmidubsky. Materials, 15 (3), 920 (2022). DOI: 10.3390/ma15030920
- T.F. Emiru, D.W. Ayele. Egypt. J. Basic Appl. Sci., 4 (1), 74 (2017). DOI: 10.1016/j.ejbas.2016.11.002
- F. Liu, C. Wang, X. Sui, M.A. Riaz, M. Xu, L. Wei, Y. Chen. Carbon Energy, 1 (2), 173 (2019). DOI: 10.1002/cey2.14
- A. Loudiki, M. Matrouf, M. Azriouil, A. Farahi, S. Lahrich, M. Bakasse, M.A. El Mhammedi. Appl. Surf. Sci. Adv., 7, 100195 (2022). DOI: 10.1016/j.apsadv.2021.100195
- V. Periasamy, M.M. Jaafar, K. Chandrasekaran, S. Talebi, F.L. Ng, S.M. Phang, G.G. Kumar, M. Iwamoto. Nanomaterials (Basel), 12 (5), 840 (2022). DOI: 10.3390/nano12050840
- A. Holm, C.J. Wrasman, K.-C. Kao, A.R. Riscoe, M. Cargnello, C.W. Frank. Langmuir, 34 (33), 9683 (2018). DOI: 10.1021/acs.langmuir.8b00777
- O.N. Oliveira Jr., L. Caseli, K. Ariga. Chem. Rev., 122 (6), 6459 (2022). DOI: 10.1021/acs.chemrev.1c00754
- J. Kim, S. Park, M. Choi, S. Kim, J. Heo, E. Yeom, S. Kim, H. Lee, S. Kim. Diamond and Related Mater., 139, 110327 (2023). DOI: 10.1016/j.diamond.2023.110327
- N. Murugesan, S. Suresh, M. Kandasamy, S. Murugesan, N. Pugazhenthiran, V. Prasanna Venkatesh, B.K. Balachandar, S.K. Kumar, M.N.M. Ansari. Physica B: Condensed Matter., 669, 415288 (2023). DOI: 10.1016/j.physb.2023.415288
- K. Zhou, C. Guo, F. Gan, J.H. Xin, H. Yu. J. Colloid Interface Sci., 640, 261 (2023). DOI: 10.1016/j.jcis.2023.02.107
- N.S. Struchkov, E.V. Alexandrov, A.V. Romashkin, G.O. Silakov, M.K. Rabchinskii. Fullerenes, Nanotubes and Carbon Nanostructures, 28, 214 (2020). DOI: 10.1080/1536383X.2019.1686623
- C. Wang, M.J. Park, D.H. Seo, H.K. Shon. Separation and Purification Technol., 254, 117604 (2020). DOI: 10.1016/j.seppur.2020.117604
- S.-Y. Kim, H.-E. Gang, G.-T. Park, H.-B. Jeon, Y.G. Jeong. Results Phys., 24, 104107 (2021). DOI: 10.1016/j.rinp.2021.104107
- X. Wang, R.A. Paredes Camacho, X. Xu, Y. Wang, Y. Qiang, H. Kungl, R.-A. Eichel, Y. Zhang, L. Lu. Nano Mater. Sci., 6 (1), 24 (2024). DOI: 10.1016/j.nanoms.2023.11.002
- A. Silvestri, A. Criado, F. Poletti, F. Wang, P. Fanjul-Bolado, M.B. Gonzalez-Garci a, C. Garci a-Astrain, L.M. Liz-Marzan, X. Feng, C. Zanardi, M. Prato. Adv. Functional Mater., 32 (2), 2105028 (2022). DOI: 10.1002/adfm.202105028
- S. Guo, J. Chen, Y. Zhang, J. Liu. Nanomaterials, 11, 2539 (2021). DOI: 10.3390/nano11102539
- N. Al-Azzam, A. Alazzam. PLoS ONE, 17 (6), e0269914 (2022). DOI: 10.1371/journal.pone.0269914
- A. Cammarano, G. De Luca, E. Amendola. Cent. Eur. J. Chem., 11 (1), 35 (2013). DOI: 10.2478/s11532-012-0135-x
- S. Kim, R.A.R. Bowen, R.N. Zare. ACS Appl. Mater. Interfaces, 7, 1925 (2015). DOI: 10.1021/am507606r
- J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascon. Langmuir, 24, 10560 (2008). DOI: 10.1021/la801744a
- M.S. Khan, A. Shakoor, G.T. Khan, S. Sultana A. Zia. J. Chem. Soc. Pak., 37 (01), 62 (2015)
- B.-B. Feng, Z.-H. Wang, W.-H. Suo, Yi. Wang, J.-C. Wen, Y.-F. Li, H.-L. Suo, M. Liu, L. Ma. Mater. Res. Express, 7, 095009 (2020). DOI: 10.1088/2053-1591/abb2ca
- D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis. J. Colloid Interface Sci., 430, 108 (2014). DOI: 10.1016/j.jcis.2014.05.033
- D.W. Johnson, B.P. Dobson, K.S. Coleman. Current Opinion Colloid Interface Sci., 20, 367 (2015). DOI: 10.1016/j.cocis.2015.11.004
- I.A. Komarov, E.N. Rubtsova, A.S. Lapashina, A.V. Golovin, I.I. Bobrinetskiy. Biomed. Eng., 51, 377 (2018). DOI: 10.1007/s10527-018-9753-8
- F.D. Vasileva, A.N. Kapitonov, A.E. Tomskaya, S.A. Smagulova. J. Structural Chem., 59 (4), 823 (2018). DOI: 10.1134/s002247661804011x
- S. Vafaei, T. Borca-Tasciuc, M.Z. Podowski, A. Purkayastha, G. Ramanath, P.M. Ajayan. Nanotechnology, 17, 2523 (2006). DOI: 10.1088/0957-4484/17/10/014
- J. Chinnam, D. Das, R. Vajjha, J. Satti. Interna. Commun. Heat Mass Transfer, 62, 1 (2015). DOI: 10.1016/j.icheatmasstransfer.2014.12.009
- A.C. Sparavigna. Graphene and Graphene Oxide ( Raman Spectroscopy) (ChemRxiv, 2024). DOI: 10.26434/chemrxiv-2024-86stv-v2
- V. Scardaci, G. Compagnini. Data in Brief, 38, 107306 (2021). DOI: 10.1016/j.dib.2021.107306
- R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, G. Gryglewicz. Materials, 11 (7), 1050 (2018). DOI: 10.3390/ma11071050
- L. Qian, A.R. Thiruppathi, R. Elmahdy, J. Van der Zalm, A. Chen. Sensors, 20 (5), 1252 (2020). DOI: 10.3390/s20051252
- C.K. Chua, M. Pumera. Small, 11 (11), 1266 (2015). DOI: 10.1002/smll.201400154
- G. Sadovska, P. Honcova, J. Moravkova, I. Jirka, M. Vorokhta, R. Pilavr, J. Rathousky, D. Kaucky, E. Mikyskova, P. Sazama. Carbon, 206, 211 (2023). DOI: 10.1016/j.carbon.2023.02.042
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.