Boundary conditions of sliding during the motion of bodies in a dilute emulsion of gas bubbles
Boshenyatov В. V. 1
1Institute of Applied Mechanics, Russian Academy of Sciences, Moscow, Russia
Email: bosbosh@mail.ru
It is shown that the reason for the slip boundary conditions of during the movement of bodies in a viscous and incompressible emulsion of gas bubbles is the hydrodynamic interaction of the bubbles with the surface of the body. The influence of hydrodynamic interaction on the slip parameter ξ increases with an increase in the volume concentration of bubbles φ and with a decrease in the size of the body R compared to the size of the bubbles a. Limit analytical dependences of the slip parameter for a ball moving in an emulsion of identical gas bubbles were obtained: ξdown<ξ(a/R,φ)<ξup. Keywords: slip boundary conditions, Stokes Equations, emulsion of gas bubbles, hydrodynamic interaction.
- V.Ya. Rudyak, A.V. Minakov, Sovremennye problemy mikro- i nanoflyuidiki (Nauka, Novosibirsk, 2016), pp. 7--33 (in Russian)
- B.V. Boshenyatov, Mikropuzyr'kovye gazozhidkostnye sredy i perspektivy ikh ispol'zovaniya (LAP Lambert Academic, Saarbrucken, 2016), pp. 149--166 (in Russian)
- B.V. Boshenyatov, I.V. Chernyshev, Fluid Mech. Sov. Res., 20 (6), 124 (1991)
- O.B. Gus'kov, J. Appl. Math. Mech., 77 (6), 603 (2013). DOI: 10.1016/j.jappmathmech.2014.03.005
- B.V. Boshenyatov, Tech. Phys. Lett., 44, 94 (2018). DOI: 10.1134/S1063785018020049
- B.V. Boshenyatov, A.A. Glazunov, A.N. Ishchenko, Yu.N. Karnet, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 86, 35 (2023) (in Russian). DOI: 10.17223/19988621/86/3
- V. Christos, V. Gelbgras, M.V. Papalexandris, J. Non-Newtonian Fluid Mech., 305, 104830 (2022). DOI: 10.1016/j.jnnfm.2022.104830
- M. Kroupa, M. Soos, J. Kosek, Phys. Chem. Chem. Phys., 19 (8), 5979 (2017). DOI: 10.1039/c6cp07666a
- S. Ghosh, D. van den Ende, F. Mugele, M.H.G. Duits, Coll. Surf. A, 491, 50 (2016). DOI: 10.1016/j.colsurfa.2015.11.066
- J.F. Collis, S. Olcum, D. Chakraborty, S.R. Manalis, J.E. Sader, Nano Lett., 21(12), 4959 (2021). DOI: 10.1021/acs.nanolett.1c00603
- J.C. Maxwell, Phil. Trans. Roy. Soc. (Part I), 170, 231 (1879). DOI: 10.1098/rstl.1879.0067
- M. Gad-el-Hak, J. Fluids Eng., 121 (1), 5 (1999). DOI: 10.1115/1.2822013
- B.U. Felderhof, J. Phys. A, 11 (5), 929 (1978). DOI: 10.1088/0305-4470/11/5/022
- H.J. Keh, S.H. Chen, Chem. Eng. Sci., 52 (11), 1789 (1997). DOI: 10.1016/s0009-2509(96)00514-3
- G.I. Taylor, Proc. Roy. Soc. Lond. A., 138, 41 (1932). DOI: 10.1098/rspa.1932.0169
- R.W. Barber, Y. Sun, X.J. Gu, D.R. Emerson, Vacuum, 76 (1), 73 (2004). DOI: 10.1016/j.vacuum.2004.05.012
- O.B. Guskov, B.V. Boshenyatov, Dokl. Phys., 56 (6), 352 (2011). DOI: 10.1134/S1028335811060073
- [O.B. Guskov, J. Appl. Math. Mech., 77 (4), 401 (2013). DOI: 10.1016/j.jappmathmech.2013.11.009
- M.D. Allen, G.R. Otto, Aerosol Sci. Technol., 4 (3), 269 (1985). DOI: 10.1080/02786828508959055
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.