Opposition of two informational quantifiers of directional coupling between stochastic systems
Smirnov D. A. 1,2
1Saratov State University, Saratov, Russia
2Saratov Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
Email: smirnovda@yandex.ru
The work studies two widely known information-theoretic tools for estimation of directional couplings (mutual influences) between observed processes - transfer entropy and Liang-Kleeman information flow. They are formally similar, have measurement units with the same name and, indeed, often characterize a coupling in a similar sense. However, it is shown here with an exemplary stochastic system within the framework of dynamical causal effects that situations, where these quantifiers behave in an opposite way (one of them increases, while another one decreases) under a change of governing parameters, are typical. Then, the two quantifiers characterize a coupling in two essentially different senses which circumstance is important and should be taken into account in their practical applications. Keywords: stochastic dynamical systems, information-theoretic quantifiers of directional couplings, time series.
- K. Hlavavckova-Schindler, M. Paluvs, M. Vejmelka, J. Bhattacharya, Phys. Rep., 441 (1), 1 (2007). DOI: 10.1016/j.physrep.2006.12.004
- M. Wibral, R. Vicente, J.T. Lizier, Directed information measures in neuroscience (Springer-Verlag, Berlin-Heidelberg, 2014). DOI: 10.1007/978-3-642-54474-3
- J. Runge, S. Bathiany, E. Bollt, G. Camps-Valls, D. Coumou, E. Deyle, C. Glymour, M. Kretschmer, M.D. Mahecha, J. Munoz-Mari, E.H. van Nes, J. Peters, R. Quax, M. Reichstein, M. Scheffer, B. Scholkopf, P. Spirtes, G. Sugihara, J. Sun, K. Zhang, J. Zscheischler, Nat. Commun., 10, 2553 (2019). DOI: 10.1038/s41467-019-10105-3
- D.A. Smirnov, Phys. Rev. E, 105 (3), 034209 (2022). DOI: 10.1103/PhysRevE.105.034209
- T. Schreiber, Phys. Rev. Lett., 85 (2), 461 (2000). DOI: 10.1103/PhysRevLett.85.461
- X.S. Liang, R. Kleeman, Phys. Rev. Lett., 95 (24), 244101 (2005). DOI: 10.1103/PhysRevLett.95.244101
- M. Vejmelka, M. Palus, Phys. Rev. E, 77 (2), 026214 (2008). DOI: 10.1103/PhysRevE.77.026214
- L. Barnett, A.B. Barrett, A.K. Set, Phys. Rev. Lett., 103 (23), 238701 (2009). DOI: 10.1103/PhysRevLett.103.238701
- J. Runge, J. Heitzig, V. Petoukhov, J. Kurths, Phys. Rev. Lett., 108 (25), 258701 (2012). DOI: 10.1103/PhysRevLett.108.258701
- X.S. Liang, Phys. Rev. E, 90 (5), 052150 (2014). DOI: 10.1103/PhysRevE.90.052150
- D.A. Smirnov, Phys. Rev. E, 90 (6), 062921 (2014). DOI: 10.1103/PhysRevE.90.062921
- T. Bossomaier, L. Barnett, M. Harre, J.T. Lizier, An introduction to transfer entropy. Information flow in complex systems (Springer, Cham, 2016). DOI: 10.1007/978-3-319-43222-9
- A. Stips, D. Macias, C. Coughlan, E. Garcia-Gorriz, X.S. Liang, Sci. Rep., 6, 21691 (2016). DOI: 10.1038/srep21691
- D.F.T. Hagan, G. Wang, X.S. Liang, H.A.J. Dolman, J. Climate, 32 (21), 7521 (2019). DOI: 10.1175/JCLI-D-18-0881.1
- D.A. Smirnov, Phys. Rev. E, 102 (6), 062139 (2020). DOI: 10.1103/PhysRevE.102.062139
- X.S. Liang, Entropy, 23 (6), 679 (2021). DOI: 10.3390/e23060679
- R. Silini, C. Masoller, Sci. Rep., 11, 8423 (2021). DOI: 10.1038/s41598-021-87818-3
- C. Pires, D. Docquier, S. Vannitsem, Physica D, 458, 133988 (2024). DOI: 10.1016/j.physd.2023.133988
- D.A. Smirnov, Chaos, 34 (3), 033130 (2024). DOI: 10.1063/5.0189544
- D.A. Smirnov, Radiophys. Quantum Electron., 67, 181 (2024). DOI: 10.1007/s11141-025-10364-9
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.