Resonators of IR lasers based on two-dimensional photonic crystals for organization of surface output of radiation
Oreshko I. V.1, Zolotarev V. V.1, Slipchenko S. O.1, Kazakova A. E.1, Pikhtin N. A.1
1Ioffe Institute, St. Petersburg, Russia
Email: ioreshko@mail.ioffe.ru, zolotarev.bazil@mail.ioffe.ru

PDF
Within the AlGaAs/GaAs/InGaAs heterostructure, the output losses were calculated for resonators based on 2D photonic crystals with square symmetry lattice, which nodes formed in the upper cladding layer of the laser waveguide by holes of different symmetries. It is shown theoretically that, in contrast to photonic crystals formed by holes with C2 symmetry, characterized by the presence of high-Q modes with zero output losses, photonic crystals formed by holes in the shape of isosceles right triangles or equilateral trapezoids demonstrated the greatest mode discrimination between the two lowest-threshold modes with non-zero output losses. Calculations of output losses show that the most preferable designs with holes characterized by a large depth, leaving a thin (0.1 microns) residual layer between the photonic crystal region and the waveguide, and the final optimization of the output loss value should be performed with a known value of internal optical losses in a specific heterostructure. Keywords: semiconductor lasers, photonic crystal, distributed feedback, cavity modes.
  1. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, G. Sasaki. Appl. Phys. Lett., 75 (3), 316 (1999). DOI: 10.1063/1.124361
  2. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R.E. Slusher, J.D. Joannopoulos, O. Nalamasu. Appl. Phys. Lett., 74 (1), 7 (1999). DOI: 10.1063/1.123116
  3. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki. Science, 293 (5532), 1123 (2001). DOI: 10.1126/science.1061738
  4. M. Imada, A. Chutinan, S. Noda, M. Mochizuki. Phys. Rev. B, 65 (19), 195306 (2002). DOI: 10.1103/PhysRevB.65.195306
  5. I. Vurgaftman, J.R. Meyer. IEEE J. Quant. Electron., 39 (6), 689 (2003). DOI: 10.1109/JQE.2003.811943
  6. D. Ohnishi, T. Okano, M. Imada, S. Noda. Opt. Express, 12 (8), 1562 (2004). DOI: 10.1364/opex.12.001562
  7. M. Yoshida, M. Kawasaki, M. De Zoysa, K. Ishizaki, T. Inoue, Y. Tanaka, R. Hatsuda, S. Noda. Proc. IEEE, 108 (5), 819 (2020). DOI: 10.1109/JPROC.2019.2935159
  8. M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, S. Noda. Nature Materials, 18 (2), 121 (2019). DOI: 10.1038/s41563-018-0242-y
  9. K. Kitamura, M. Kitazawa, S. Noda. Opt. Express, 27 (2), 1045 (2019). DOI: 10.1364/oe.27.001045
  10. R. Sakata, K. Ishizaki, M. De Zoysa, S. Fukuhara, T. Inoue, Y. Tanaka, K. Iwata, R. Hatsuda, M. Yoshida, J. Gelleta, S. Noda. Nature Commun., 11 (1), 1 (2020). DOI: 10.1038/s41467-020-17092-w
  11. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, S. Noda. Nature, 441 (7096), 946 (2006). DOI: 10.1038/441946a
  12. M. Yokoyama, S. Noda. IEICE Trans. Electron., 87 (3), 386 (2004)
  13. M. Yokoyama, S. Noda. Opt. Express, 13 (8), 2869 (2005). DOI: 10.1364/OPEX.13.002869
  14. D.-U. Kim, S. Kim, J. Lee, S.-R. Jeon, H. Jeon. IEEE Photon. Technol. Lett., 23 (20), 1454 (2011). DOI: 10.1109/LPT.2011.2162944
  15. L.-R. Chen, K.-B. Hong, K.-C. Huang, H.-T. Yen, T.-C. Lu. Opt. Express, 29 (7), 11293 (2021). DOI: 10.1364/OE.421019
  16. K.-B. Hong, L.-R. Chen, K.-C. Huang, H.-T. Yen, W.-C. Weng, B.-H. Chuang, T.-C. Lu. IEEE J. Select. Top. Quant. Electron., 28 (1), 1 (2022). DOI: 10.1109/JSTQE.2021.3095961
  17. S. Saito, R. Hashimoto, K. Kaneko, T. Kakuno, Y. Yao, N. Ikeda, Y. Sugimoto, T. Mano, T. Kuroda, H. Tanimura, S. Takagi, K. Sakoda. Appl. Phys. Express, 14 (10), 102003 (2021). DOI: 10.35848/1882-0786/ac2240
  18. H. Kogelnik, C.V. Shank. J. Appl. Phys., 43 (5), 2327 (1972). DOI: 10.1063/1.1661499
  19. W. Streifer, D. Scifres, R. Burnham. IEEE J. Quant. Electron., 13 (4), 134 (1977). DOI: 10.1109/JQE.1977.1069328
  20. K. Sakai, E. Miyai, S. Noda. Appl. Phys. Lett., 89 (2), 021101 (2006). DOI: 10.1063/1.2220057
  21. K. Sakai, E. Miyai, S. Noda. IEEE J. Quant. Electron., 46 (5), 788 (2010). DOI: 10.1109/JQE.2009.2037597
  22. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, S. Noda. Phys. Rev. B, 84 (19), 195119 (2011). DOI: 10.1103/PhysRevB.84.195119
  23. K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, S. Noda. IEEE J. Select. Areas Commun., 23 (7), 1335 (2005). DOI: 10.1109/JSAC.2005.851205
  24. M. Plihal, A. Shambrook, A. A. Maradudin, P. Sheng. Optics Commun., 80 (3-4), 199 (1991). DOI: 10.1016/0030-4018(91)90250-H
  25. F. Bloch. Zeitschrift Physik, 52 (7), 555 (1929). DOI: 10.1007/BF01339455
  26. S. Adachi. J. Appl. Phys., 58 (3), R1 (1985). DOI: 10.1063/1.336070

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru