Effect of strain on thermoemf in the silicate glass doped with ruthenium dioxide
Tursunov M.1, Dekhkonov A.1, Abdurakhmanov G.1, Ksenevich V. 2, Tashmukhamedova D. A.3, Vokhidova G.4, Rai Dibya Prakash 5
1National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan
2Belarusian State University, Minsk, Republic of Belarus
3Tashkent State Technical University, Tashkent, Uzbekistan
4 Alfakom Non-state Training Center, Tashkent, Uzbekistan
5Pachhunga University College, Pachhunga, Aizawl Mizoram, India
Email: muhriddintursunov.1995@mail.ru, dexqonovavazbek93@gmail.com, gulmirzo@mail.ru, ksenevich@bsu.by, ftmet@mail.ru, vgulbakhor@mail.ru, dibya@pucollege.edu.in

PDF
The effect of uniaxial strain on the thermoEMF of the ruthenium dioxide-doped silicate glass (thick film resistor) was studied. The variation of the thermoEMF has been analysed based on the dopant compositions and applied strain. We comprehensively studied a doped sample's complex matrix concerning the atoms' radial distribution. We report the enhanced value of the thermoEMF in the deformed sample by 20-120 times larger than the unstrained one. We have measured the ratio of the strained-induced thermoEMF and the resistance in a complex matrix with the lowest atomic arrangement. However, the highest coefficient of thermoEMF (Seebeck coefficient) has been found in the simplest glass composition. ThermoEMF measured in the doped silicate glass is sensitive to the measuring tool. Keywords: Seebeck coefficient, strain gauge coefficient, strain sensor, three-point bending installation, piezoresistive effect
  1. J. Friden. Handbook of Modern Sensors. Physics, Design and Applications. 4th ed. (Springer, 2010)
  2. A.S. Fiorillo, C.D. Critello, A.S. Pullano. Sensors Actuators A: Phys., 281, 156 (2018). DOI: 10.1016/j.sna.2018.07.006
  3. M.J. McGrath, C. Ni Scanaill. Sensor Technologies. Healthcare, Wellness and Environmental Applications (Apress Open, 2014)
  4. J.X.J. Zhang, K. Hoshino. Molecular Sensors and Nanodevices (Elsevier, 2019), DOI: 10.1016/C2017-0-02290-5
  5. Y. Zhao, Y. Liu, Y. Li, Q. Hao. Sensors, 20, 5826 (2020). DOI: 10.3390/s20205826
  6. H. Trietley. Strain Gauges: Basic Operating Principles, Materials, and Properties. https://control.com/technical-articles/strain-gauges-basic-operating-principles-materials-and-properties/
  7. K. Arshak, D. Morris, A. Arshak, O. Korostynska. J. Mater. Sci.: Mater Electron, 17, 767 (2006). DOI: 10.1007/s10854-006-0013-4
  8. J. Shu, R. Yang, Y. Chang, X. Guo, X. Yang. J. Alloys Compounds, 879, 160466 (2021). DOI: 10.1016/j.jallcom.2021.160466
  9. Y. Cui, X. Li, T. Zhang, W. Ding, J. Yin. Sensors, 22, 7595 (2022). DOI: 10.3390/s22197595
  10. R. Ottermann, D. Klaas, F. Dencker, M.C. Wurz, D. Hoheisel, P. Rottengatter, T. Kruspe. Direct Deposition of Thin-Film Strain Gauges with a New Coating System for Elevated Temperatures. In Proceed. 2020 IEEE SENSORS, Rotterdam, The Netherlands, 25-28 October 2020, p. 1-4
  11. Y. Zhao, Y. Li, Y. Wu, G. Ding, C. Zhang. IEEE Sensors J., 24 (7), 2024, 01 (2024). DOI: 10.1109/JSEN.2024.3363510
  12. M. Prudentiziati (Ed.), Handbook of Sensors and Actuators: Thick-films Sensors (Elsevier, 1994), v. 1
  13. Y. Zheng, J. Atkinson, R. Sion. J. Phys. D: Appl. Phys., 36, 1153 (2003). DOI: 10.1088/0022-3727/36/9/314
  14. M. Hrovat, J. Holc, D. Belavivc, S. vSoba. J. Mater. Sci. Lett., 13, 992 (1994). DOI: 10.1007/BF00701448
  15. G. Abdurakhmanov. World J. Cond. Matter Phys., 4 (3), 166 (2014). DOI: 10.4236/wjcmp.2014.43021
  16. G. Abdurakhmanov. Electrical conduction in doped silicate glass (thick film resistors). In: New Insights into Physical Sciences (London-Hooghly, Book Publishers International, 2020), v. 4, p. 47-71. DOI: 10.9734/bpi/nips/v4
  17. S.P. Bogdanov, V.V. Kozlov, A.P. Shevchik, A.S. Dolgin. Refractories and Industrial Ceramics, 60 (4), 405 (2019). DOI: 10.1007/s11148-019-00376-0
  18. Electronic media. Available at: http://www.glasswork.ru/auxpage_glass_properties?ysclid =lzp77nl4jb353096302
  19. A.G. Samoilovich, L.L. Korenblit. UFN, 49 (2), 243 (1953) (in Russian)
  20. K.A. Putilov. Kurs fiziki. V trekh tomakh. V. 2 (Gosudarstvennoe izd-vo fiziko-matematicheskoi lit-ry, M., 1963) (in Russian)
  21. M. Hrovat, D. Belavivc, Z. Samarvzija, J. Holc. J. Mater. Sci., 36, 2679 (2001). DOI: 10.1023/a:1017908728642
  22. M. Hrovat, D. Belavivc, Z. Samarvzija, J. Holc. An Investigation of Thick-Film Resistor, Fired at Different Temperatures, for Strain Sensors. 24th Int. Spring Seminar on Electronics Technology. May 5-9, 2001, Calimanesti-Caciulata, Romania. Conference Proceedings, 32-36
  23. M. Hrovat, J. Holc, D. Belavivc, S. vSoba. J. Mater. Sci. Lett., 14, 584 (1995)
  24. M. Hrovat, D. Belavivc, H. Urvsivc, J. Kita, J. Holc, S. Drnovvsek, J. Cilensek, M. Kosec, R. Moos. An Investigation of Thick-film Materials for Temperature and Pressure Sensors on Self-constrained LTCC Substrates. IEEE 2008 2nd Electronics Systemintegration Technology Conference - Greenwich, Sept. 01-04, 2008. Proc. p. 339-346. DOI: 10.1109/estc.2008.4684372
  25. Y. Ma, J. Chen, M. Li. Bi2Ru207 Conductive Phase and its Effects on the Gauge Factor of Ru-based Thick-film Resistors. Proceedings of the 2006 IEEE Intern. Conf. on Information Acquisition. August 20-23, 2006, Weihai, Shandong, China. p. 245-248
  26. C. Song, D.V. Kerns, Jr., J.L. Davidson, W. Kang, S. Kerns. Evaluation and Design Optimization of Piezoresistive Gauge Factor of Thick-film Resistors. IEEE Proceedings of the SOUTHEASTCON '91, p. 1106. DOI: 10.1109/secon.1991.147935
  27. M. Hrovat, G. Drat'ic, J. Holc, D. Belavivc. J. Materials Sci. Lett., 14, 1048 (1995)
  28. M. Prudenziati. Piezoresistive effects in thick film resistors: 30 years after. STAMPA, (2005), p. 207-216. (Intervento presentato al convegno Sensors and Microsystems tenutosi a Ferrara nel 8-11 February 2004)
  29. F. Johnson, G.M. Crosbie, W.T. Donlon. J. Mater. Sci.: Mat. In Electron., 8 (1), 29 (1997)
  30. M. Prudenziati, B. Morten, F. Cilloni, G. Ruffi. Sensors and Actuators, 19, 401 (1989)
  31. M. Hrovat, J. Holc, Z. Samardvzija. J. Mater. Sci. Lett., 20, 701 (2001)
  32. C. Grimaldi1, P. Ryser, S. Strassler. Anisotropic random resistor networks: a model for piezoresistive response of thick-film resistors (arxiv:cond-mat/0203612v1 [cond-mat.dis-nn] 29 Mar. 2002)
  33. S. Vionnet Menot. Low firing temperature thick-film piezoresistive composites --- properties and conduction mechanism (PhD Thesis, Lausanna, 2005)
  34. O. Correa, P.P. de Abreu Filho, S. Moshkalev, J. Swart. Sensors, 22, 3256 (2022). DOI: 10.3390/s22093256
  35. C. Ferrero. Proposed theoretical models for thick film transport mechanisms: example of thick film strain gauges on enamelled steels (2022), 51 p. https://www.researchgate.net/publication/358042608
  36. J.M. Ziman. Models of Disorder (Cambridge University Press, Cambridge, 1979)
  37. M. Totokawa, T. Tani, H. Azuma, A. Takeichi, R. Asahi. J. Am. Ceram. Soc., 93 (10), 3312 (2010). DOI: 10.1111/j.1551-2916.2010.03844.x
  38. M. Totokawa, T. Tani, M. Yoshimura, S. Yamashita, K. Morikawa, Y. Mitsuoka, T. Nonaka. J. Am. Ceram. Soc., 93 (2), 481 (2010). DOI: 10.1111/j.1551-2916.2009.03403.x
  39. M. Totokawa, T. Tani, S. Yamashita, K. Morikawa, Y. Mitsuoka, H. Makino. Int. J. Appl. Ceram. Technol., 6 (2), 195 (2009). DOI: 10.1111/j.1744-7402.2008.02325.x
  40. G. Abdurakhmanov. WJCMP, 1 (2), 19 (2011). DOI: 10.4236/wjcmp.2011.12004
  41. G. Abdurakhmanov. WJCMP, 1 (1), 1 (2011). DOI: 10.4236/wjcmp.2011.11001
  42. T. Yamaguchi, Y. Nakamura. J. Am. Ceram. Soc., 78 (5), 1372 (1995)
  43. O. Abe, Y. Taketa. J. Phys. D: Appl. Phys., 24, 1163 (1991)
  44. K. Adachi, H. Kuno. J. American Ceramic Soc., 80 (5), 1055 (1997). DOI: 10.1111/j.1151-2916.1997.tb02946.x
  45. O. Abe, Y. Taketa, M. Haradome. Electrical Eng. Jpn., 110 (1), 21 (1990)
  46. G. Abdurakhmanov. Electrical conduction in doped silicate glass (thick film resistors. In New Insights into Physical Sciences (London-Hooghly, Book Publishers International, 2020), v. 4, p. 47-71. DOI: 10.9734/bpi/nips/v4
  47. K.P. O'Donnell, X. Chen. Appl. Phys. Lett., 58 (25), 2924 (1991)
  48. G. Abdurakhmanov, G.S. Voxidova, D. Rai. Modern Physics of Thermoelectric Phenomena --- Achievements and Problems. In New Materials and Devices for Thermoelectric Power Generation (IntechOpen, 2023)
  49. K. Seeger. Semiconductor Physics (Springer, Berlin, 2004)
  50. D.K.C. MacDonald. Thermoelectricity: An Introduction to the Principles (Dover Publications, Minneola, NY., 2016)
  51. M. Cutler, N.F. Mott. Phys. Rev., 181 (3), 1336 (1969). DOI: 10.1103/PhysRev.181.1336
  52. G. Abdurakhmanov, V.I. Shimanski, B. Onsengendler, B. Umirzahov, A.N. Urokov. Tech. Phys., 66 (2), 269 (2021). DOI: 10.1134/S106378422102002X
  53. G. Abdurakhmanov, A. Dekhkonov, M. Tursunov, D. Tashmukhamedova. Phys. Sci. Intern. J., 27 (6), 5 (2023). DOI: 10.9734/PSIJ/2023/v27i6806
  54. K. Kaur, R. Kumar. Chin. Phys. B, 26 (6), 066401 (2017). DOI: 10.1088/1674-1056/26/6/066401
  55. R. Zosiamliana, Lalrinkima, B. Chettri, G. Abdurakhmanov, M.P. Ghimire, D.P. Rai. RSC Adv., 12, 12453 (2022). DOI: 10.1039/D2RA01125E

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru