Effect of strain on thermoemf in the silicate glass doped with ruthenium dioxide
Tursunov M.1, Dekhkonov A.1, Abdurakhmanov G.1, Ksenevich V.
2, Tashmukhamedova D. A.3, Vokhidova G.4, Rai Dibya Prakash
5
1National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan
2Belarusian State University, Minsk, Republic of Belarus
3Tashkent State Technical University, Tashkent, Uzbekistan
4 Alfakom Non-state Training Center, Tashkent, Uzbekistan
5Pachhunga University College, Pachhunga, Aizawl Mizoram, India
Email: muhriddintursunov.1995@mail.ru, dexqonovavazbek93@gmail.com, gulmirzo@mail.ru, ksenevich@bsu.by, ftmet@mail.ru, vgulbakhor@mail.ru, dibya@pucollege.edu.in
The effect of uniaxial strain on the thermoEMF of the ruthenium dioxide-doped silicate glass (thick film resistor) was studied. The variation of the thermoEMF has been analysed based on the dopant compositions and applied strain. We comprehensively studied a doped sample's complex matrix concerning the atoms' radial distribution. We report the enhanced value of the thermoEMF in the deformed sample by 20-120 times larger than the unstrained one. We have measured the ratio of the strained-induced thermoEMF and the resistance in a complex matrix with the lowest atomic arrangement. However, the highest coefficient of thermoEMF (Seebeck coefficient) has been found in the simplest glass composition. ThermoEMF measured in the doped silicate glass is sensitive to the measuring tool. Keywords: Seebeck coefficient, strain gauge coefficient, strain sensor, three-point bending installation, piezoresistive effect
- J. Friden. Handbook of Modern Sensors. Physics, Design and Applications. 4th ed. (Springer, 2010)
- A.S. Fiorillo, C.D. Critello, A.S. Pullano. Sensors Actuators A: Phys., 281, 156 (2018). DOI: 10.1016/j.sna.2018.07.006
- M.J. McGrath, C. Ni Scanaill. Sensor Technologies. Healthcare, Wellness and Environmental Applications (Apress Open, 2014)
- J.X.J. Zhang, K. Hoshino. Molecular Sensors and Nanodevices (Elsevier, 2019), DOI: 10.1016/C2017-0-02290-5
- Y. Zhao, Y. Liu, Y. Li, Q. Hao. Sensors, 20, 5826 (2020). DOI: 10.3390/s20205826
- H. Trietley. Strain Gauges: Basic Operating Principles, Materials, and Properties. https://control.com/technical-articles/strain-gauges-basic-operating-principles-materials-and-properties/
- K. Arshak, D. Morris, A. Arshak, O. Korostynska. J. Mater. Sci.: Mater Electron, 17, 767 (2006). DOI: 10.1007/s10854-006-0013-4
- J. Shu, R. Yang, Y. Chang, X. Guo, X. Yang. J. Alloys Compounds, 879, 160466 (2021). DOI: 10.1016/j.jallcom.2021.160466
- Y. Cui, X. Li, T. Zhang, W. Ding, J. Yin. Sensors, 22, 7595 (2022). DOI: 10.3390/s22197595
- R. Ottermann, D. Klaas, F. Dencker, M.C. Wurz, D. Hoheisel, P. Rottengatter, T. Kruspe. Direct Deposition of Thin-Film Strain Gauges with a New Coating System for Elevated Temperatures. In Proceed. 2020 IEEE SENSORS, Rotterdam, The Netherlands, 25-28 October 2020, p. 1-4
- Y. Zhao, Y. Li, Y. Wu, G. Ding, C. Zhang. IEEE Sensors J., 24 (7), 2024, 01 (2024). DOI: 10.1109/JSEN.2024.3363510
- M. Prudentiziati (Ed.), Handbook of Sensors and Actuators: Thick-films Sensors (Elsevier, 1994), v. 1
- Y. Zheng, J. Atkinson, R. Sion. J. Phys. D: Appl. Phys., 36, 1153 (2003). DOI: 10.1088/0022-3727/36/9/314
- M. Hrovat, J. Holc, D. Belavivc, S. vSoba. J. Mater. Sci. Lett., 13, 992 (1994). DOI: 10.1007/BF00701448
- G. Abdurakhmanov. World J. Cond. Matter Phys., 4 (3), 166 (2014). DOI: 10.4236/wjcmp.2014.43021
- G. Abdurakhmanov. Electrical conduction in doped silicate glass (thick film resistors). In: New Insights into Physical Sciences (London-Hooghly, Book Publishers International, 2020), v. 4, p. 47-71. DOI: 10.9734/bpi/nips/v4
- S.P. Bogdanov, V.V. Kozlov, A.P. Shevchik, A.S. Dolgin. Refractories and Industrial Ceramics, 60 (4), 405 (2019). DOI: 10.1007/s11148-019-00376-0
- Electronic media. Available at: http://www.glasswork.ru/auxpage_glass_properties?ysclid =lzp77nl4jb353096302
- A.G. Samoilovich, L.L. Korenblit. UFN, 49 (2), 243 (1953) (in Russian)
- K.A. Putilov. Kurs fiziki. V trekh tomakh. V. 2 (Gosudarstvennoe izd-vo fiziko-matematicheskoi lit-ry, M., 1963) (in Russian)
- M. Hrovat, D. Belavivc, Z. Samarvzija, J. Holc. J. Mater. Sci., 36, 2679 (2001). DOI: 10.1023/a:1017908728642
- M. Hrovat, D. Belavivc, Z. Samarvzija, J. Holc. An Investigation of Thick-Film Resistor, Fired at Different Temperatures, for Strain Sensors. 24th Int. Spring Seminar on Electronics Technology. May 5-9, 2001, Calimanesti-Caciulata, Romania. Conference Proceedings, 32-36
- M. Hrovat, J. Holc, D. Belavivc, S. vSoba. J. Mater. Sci. Lett., 14, 584 (1995)
- M. Hrovat, D. Belavivc, H. Urvsivc, J. Kita, J. Holc, S. Drnovvsek, J. Cilensek, M. Kosec, R. Moos. An Investigation of Thick-film Materials for Temperature and Pressure Sensors on Self-constrained LTCC Substrates. IEEE 2008 2nd Electronics Systemintegration Technology Conference - Greenwich, Sept. 01-04, 2008. Proc. p. 339-346. DOI: 10.1109/estc.2008.4684372
- Y. Ma, J. Chen, M. Li. Bi2Ru207 Conductive Phase and its Effects on the Gauge Factor of Ru-based Thick-film Resistors. Proceedings of the 2006 IEEE Intern. Conf. on Information Acquisition. August 20-23, 2006, Weihai, Shandong, China. p. 245-248
- C. Song, D.V. Kerns, Jr., J.L. Davidson, W. Kang, S. Kerns. Evaluation and Design Optimization of Piezoresistive Gauge Factor of Thick-film Resistors. IEEE Proceedings of the SOUTHEASTCON '91, p. 1106. DOI: 10.1109/secon.1991.147935
- M. Hrovat, G. Drat'ic, J. Holc, D. Belavivc. J. Materials Sci. Lett., 14, 1048 (1995)
- M. Prudenziati. Piezoresistive effects in thick film resistors: 30 years after. STAMPA, (2005), p. 207-216. (Intervento presentato al convegno Sensors and Microsystems tenutosi a Ferrara nel 8-11 February 2004)
- F. Johnson, G.M. Crosbie, W.T. Donlon. J. Mater. Sci.: Mat. In Electron., 8 (1), 29 (1997)
- M. Prudenziati, B. Morten, F. Cilloni, G. Ruffi. Sensors and Actuators, 19, 401 (1989)
- M. Hrovat, J. Holc, Z. Samardvzija. J. Mater. Sci. Lett., 20, 701 (2001)
- C. Grimaldi1, P. Ryser, S. Strassler. Anisotropic random resistor networks: a model for piezoresistive response of thick-film resistors (arxiv:cond-mat/0203612v1 [cond-mat.dis-nn] 29 Mar. 2002)
- S. Vionnet Menot. Low firing temperature thick-film piezoresistive composites --- properties and conduction mechanism (PhD Thesis, Lausanna, 2005)
- O. Correa, P.P. de Abreu Filho, S. Moshkalev, J. Swart. Sensors, 22, 3256 (2022). DOI: 10.3390/s22093256
- C. Ferrero. Proposed theoretical models for thick film transport mechanisms: example of thick film strain gauges on enamelled steels (2022), 51 p. https://www.researchgate.net/publication/358042608
- J.M. Ziman. Models of Disorder (Cambridge University Press, Cambridge, 1979)
- M. Totokawa, T. Tani, H. Azuma, A. Takeichi, R. Asahi. J. Am. Ceram. Soc., 93 (10), 3312 (2010). DOI: 10.1111/j.1551-2916.2010.03844.x
- M. Totokawa, T. Tani, M. Yoshimura, S. Yamashita, K. Morikawa, Y. Mitsuoka, T. Nonaka. J. Am. Ceram. Soc., 93 (2), 481 (2010). DOI: 10.1111/j.1551-2916.2009.03403.x
- M. Totokawa, T. Tani, S. Yamashita, K. Morikawa, Y. Mitsuoka, H. Makino. Int. J. Appl. Ceram. Technol., 6 (2), 195 (2009). DOI: 10.1111/j.1744-7402.2008.02325.x
- G. Abdurakhmanov. WJCMP, 1 (2), 19 (2011). DOI: 10.4236/wjcmp.2011.12004
- G. Abdurakhmanov. WJCMP, 1 (1), 1 (2011). DOI: 10.4236/wjcmp.2011.11001
- T. Yamaguchi, Y. Nakamura. J. Am. Ceram. Soc., 78 (5), 1372 (1995)
- O. Abe, Y. Taketa. J. Phys. D: Appl. Phys., 24, 1163 (1991)
- K. Adachi, H. Kuno. J. American Ceramic Soc., 80 (5), 1055 (1997). DOI: 10.1111/j.1151-2916.1997.tb02946.x
- O. Abe, Y. Taketa, M. Haradome. Electrical Eng. Jpn., 110 (1), 21 (1990)
- G. Abdurakhmanov. Electrical conduction in doped silicate glass (thick film resistors. In New Insights into Physical Sciences (London-Hooghly, Book Publishers International, 2020), v. 4, p. 47-71. DOI: 10.9734/bpi/nips/v4
- K.P. O'Donnell, X. Chen. Appl. Phys. Lett., 58 (25), 2924 (1991)
- G. Abdurakhmanov, G.S. Voxidova, D. Rai. Modern Physics of Thermoelectric Phenomena --- Achievements and Problems. In New Materials and Devices for Thermoelectric Power Generation (IntechOpen, 2023)
- K. Seeger. Semiconductor Physics (Springer, Berlin, 2004)
- D.K.C. MacDonald. Thermoelectricity: An Introduction to the Principles (Dover Publications, Minneola, NY., 2016)
- M. Cutler, N.F. Mott. Phys. Rev., 181 (3), 1336 (1969). DOI: 10.1103/PhysRev.181.1336
- G. Abdurakhmanov, V.I. Shimanski, B. Onsengendler, B. Umirzahov, A.N. Urokov. Tech. Phys., 66 (2), 269 (2021). DOI: 10.1134/S106378422102002X
- G. Abdurakhmanov, A. Dekhkonov, M. Tursunov, D. Tashmukhamedova. Phys. Sci. Intern. J., 27 (6), 5 (2023). DOI: 10.9734/PSIJ/2023/v27i6806
- K. Kaur, R. Kumar. Chin. Phys. B, 26 (6), 066401 (2017). DOI: 10.1088/1674-1056/26/6/066401
- R. Zosiamliana, Lalrinkima, B. Chettri, G. Abdurakhmanov, M.P. Ghimire, D.P. Rai. RSC Adv., 12, 12453 (2022). DOI: 10.1039/D2RA01125E
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.