The nature of terahertz radiation in magnetic nanojunctions when current flows through them
Chigarev S. G.1, Vilkov E. A.1, Byshevski-Konopko O. A.1, Panas A. I.2, Fomin L. A.3, Malikov I. V.3
1Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia
2State Scientific-Production Enterprise “Istok”, Fryazino, Moscow region, Russia
3Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Chernogolovka, Russia
Email: chig50@mail.ru, e-vilkov@yandex.ru, bys324@ire216.msk.su
The modes of operation of a spin-injected THz-emitter using a rod-film structure in the region of starting current values (current density) have been investigated. For Fe3O4 and Fe films, two mechanisms of THz-emission emergence have been experimentally established. One of them is related to the change in the energy of the sd-exchange interaction during the transition of the magnetic layer interface by spin-polarized current, when a part of electrons decreases its energy without spin flip, and the other is determined by interband transitions with spin flip at high values of current density. The theoretical substantiation of the observed two mechanisms of THz-radiation excitation is carried out. Keywords: spin, magnetic transition, spin polarization, sd-exchange interaction, THz-radiation.
- S.S. Dhillon, M.S. Vitiell, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C.A. Schmuttenmaer, T.L. Cocker, R. Huber, A.G. Markelz, Z.D. Taylor, V.P. Wallace, J.A. Zeitler, J. Sibik, T.M. Korter, B. Ellison, S. Rea, P. Goldsmith, K.B. Cooper, R. Appleby, D. Pardo, P.G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stohr, M. Naftaly, N. Ridler, R. Clarke, J.E. Cunningham, M.B. Johnston. J. Phys. D: Appl. Phys., 50 (4), 043001 (2017). DOI: 10.1088/1361-6463/50/4/043001
- Yu.V. Gulyaev, P.E. Zil'berman, S.G. Chigarev. J. Commun. Technol. Electron., 60 (5), 411 (2015). DOI: 10.1134/S1064226915050058
- Yu.V. Gulyaev, P.E. Zil'berman, E.M. Epshtein, R.J. Elliot. J. Commun. Technol. Electron., 48 (9), 942 (2003)
- A. Kadigrobov, R.I. Shekhter, M. Jonson. Low Temp. Phys., 31 (4), 352 (2005). DOI: 10.1063/1.1884439
- Yu.V. Gulyaev, P.E. Zilberman, I.V. Malikov, G.M. Mikhailov, A.I. Panas, S.G. Chigarev, E.M. Epshtein. JETP Lett., 93 (5), 259 (2011). DOI: 10.1134/s0021364011050055
- P. Stremoukhov, A. Safin, M. Logunov, S. Nikitov, A. Kirilyuk. J. Appl. Phys., 125 (15), 223903 (2019). DOI: 10.1063/1.5090455
- A.M. Kadigrobov, R.I. Shekhter, S.I. Kulinich, M. Jonson, O.P. Balkashin, V.V. Fisun, Yu.G. Naidyuk, I.K. Yanson, S. Andersson, V. Korenivski. New J. Phys., 13 (2), 023007 (2011). DOI: 10.1088/1367-2630/13/2/023007
- A.M. Kadigrobov, R.I. Shekhter, M. Jonson. Low Temp. Phys., 38 (12), 1439 (2012). DOI: 10.1063/1.4770510
- V. Korenivski, A. Iovan, A. Kadigrobov, R.I. Shekhter. Europhys. Lett., 104 (2), 27011 (2013). DOI: 10.1209/0295-5075/104/27011
- S.G. Chigarev, L.A. Fomin, D.P. Rai, E.A. Vilkov, O.A. Byshevsky-Konopko, D.L. Zagorsky, I.M. Doludenko, A.I. Panas. SPIN, 13 (1), 2350010 (2023). DOI: 10.1142/S2010324723500108
- L.A. Fomin, A.V. Chernykh, V.A. Berezin, E.A. Vilkov. J. Surf. Investig., 15 (1), 128 (2021). DOI: 10.1134/S1027451021010237
- A.M. Kadigrobov, Z. Ivanov, T. Claeson, R.I. Shekhter, M. Jonson. Europhys. Lett., 67 (6), 948 (2004). DOI: 10.1209/epl/i2004-10159-8
- Yu.V. Gulyaev, P.E. Zil'berman, E.M. Epshtein. J. Commun. Technol. Electron., 57 (5), 506 (2012). DOI: 10.1134/S106422691205004X
- Yu.V. Gulyaev, P.E. Zil'berman, A.I. Krikunov, A.I. Panas, E.M. Ephshtein. Jetp Lett., 85 (3), 160 (2007). DOI: 10.1134/S002136400703006X
- Yu.V. Gulyaev, E.A. Vilkov, S.G. Chigarev, R.S. Kulikov, A.R. Safin, N.N. Udalov, R.S. Davydenko, A.G. Kolesnikov, A.V. Ognev, G.M. Mikhailov, A.V. Chernykh, S.V. Il'in. J. Commun. Technol. Electron., 63 (8), 928 (2018). DOI: 10.1134/S1064226918080065
- Yu.V. Gulyaev, P.E. Zilberman, A.I. Panas, E.M. Epshtein. Phys.-Usp., 52 (4), 335 (2009). DOI: 10.3367/UFNe.0179.200904b.0359
- E.A. Vilkov, G.M. Mikhailov, S.G. Chigarev, Yu.V. Gulyaev, V.N. Korenivskii, S.A. Nikitov, A.N. Slavin. J. Commun. Technol. Electron., 61 (9), 995 (2016). DOI: 10.1134/S1064226916090138
- L.D. Landau, E.M. Lifshitz. Kvantovaya mekhanika. Nerelyativistkaya teoriya (Nauka, M., 1974) (in Russian)
- Yu.V. Gulyaev, E.A. Vilkov, P.E. Zilberman, G.M. Mikhailov, S.G. Chigarev. J. Commun. Technol. Electron., 58 (12), 1137 (2013). DOI: 10.1134/S1064226913110077
- E.A. Vilkov, G.M. Mikhailov, S.A. Nikitov, A.R. Safin, M.V. Logunov, V.N. Korenivskii, S.G. Chigarev, L.A. Fomin. Phys. Solid State, 61 (6), 941 (2019). DOI: 10.1134/S1063783419060283
- J.C. Slonczewski. J. Magn. Magn. Mater., 159 (1-2), L1 (1996). DOI: 10.1016/0304-8853(96)00062-5
- L. Berger. Phys. Rev. B, 54 (13), 9353 (1996). DOI: 10.1103/PhysRevB.54.9353
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.