Mechanism of local damage to photovoltaic cells by geomagnetic plasma electrons
Zykov V. M.1, Evdokimov K. E.1, Neyman D. A.1, Vladimirov A. M.1, Voronova G. A.1
1Tomsk Polytechnic University, Tomsk, Russia
Email: evdokimov@tpu.ru

PDF
With regard to the initial period of active existence of a spacecraft (SC), the processes of anomalous degradation of the power of InGaP/InGaAs/Ge photovoltaic cells (PVC) were experimentally studied during bench tests for the effect of geomagnetic plasma by modeling the electron component of the plasma taking into account the periodic intersection of the SC orbit with the Earth's radiation belt, including the auroral zone. Using the methods of video recording of electroluminescence and measuring dark I-V curves under bench conditions, as well as the methods of microscopy, absolute spectrometry of electroluminescence and dark I-V curves after the end of bench tests, the processes of anomalous degradation of PVC were established, occurring with the participation of technological microdefects of the surface and microbreakdowns of the cover glasses of K-208. A phenomenological impact mechanism of anomalous accelerated degradation of the power of PVC at the initial stage of the SC existence is proposed. The highest rate of anomalous power degradation is observed for solar cells with technological defects in p-n-junctions. Keywords: solar panels of spacecraft, geomagnetic plasma, anode-initiated flashover, bulk microbreakdown of dielectric, damage to photovoltaic device.
  1. S.R. Messenger, E.M. Jackson, J.H. Warner, R.J. Walters, T.E. Cayton, Y. Chen, R.W. Friedel, R.M. Kippen, B. Reed. IEEE Trans. Nucl. Sci., 58 (6), 3118 (2011). DOI: 10.1109/TNS.2011.2172957
  2. D. Ferguson, P. Crabtree, S. White, B. Vayner. J. Spacecraft Rockets, 53 (3), 464 (2016). DOI: 10.2514/1.A33438
  3. M.I. Panasyuk, L.S. Novikov (red.). Model kosmosa (KDU, M., 2007), t. 2 (in Russian)
  4. R.H. Khasanshin, L.S. Novikov, S.B. Korovin. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 11, 917 (2017). DOI: 10.1134/S102745101705007X
  5. R.H. Khasanshin, L.S. Novikov. Inorg. Mater. Appl. Res., 12, 313 (2021). DOI: 10.1134/S2075113321020234
  6. L.S. Gatsenko, N.E. Maslyakova, M.B. Kagan, L.S. Novikov, M.S. Samokhina. Avtonomnaya energetika: tekhnicheskii progress i ekonomika, (in Russian). 29, 24 (2011)
  7. N.E. Maslyakova, L.S. Gatsenko, L.S. Novikov, M.S. Samokhina, V.V. Khankin. Tr. Mezhvuzovskoi nauchnoi shkoly molodykh spetsialistov "Kontsentrirovannye potoki energii v kosmicheskoi tekhnike, elektronike, ekologii i meditsine" (M., Rossiya, 2011), s. 105 (in Russian)
  8. V.E. Skurat, L.S. Gatsenko, A.N. Zhigach, M.B. Kagan, I.O. Leipunsky, L.S. Novikov, P.A. Pshechenkov, V.V. Artemov, N.G. Berezkina. Proc. 12th Int. Symp. On Materials in Space Environment (Noordwijk, Netherlands, 2012)
  9. C. Gabrielse, J.H. Lee, S. Claudepierre, D. Walker, P. O'Brien, J. Roeder, Y. Lao, J. Grovogui, D.L. Turner, A. Runov, A. Boyd, J. Fennell, J.B. Blake, K. Lopez, Y. Miyoshi, K. Keika, N. Higashio, I. Shinohara, S. Imajo, S. Kurita, T. Mitani. Space Weather, 20, e2022SW003183 (2022). DOI: 10.1029/2022SW003183
  10. A.M. Vladimirov, A.Yu. Bezhayev, V.M. Zykov, V.I. Isaychenko, A.A. Lukashchuk, S.E. Lukonin. IOP Conf. Series: Mater. Sci. Eng., 168, 012037 (2017). DOI: 10.1088/1757-899X/168/1/012037
  11. R. Hoheisel, D. Scheiman, S. Messenger, P. Jenkins, R. Walters. IEEE Trans. Nucl. Sci., 62 (6), 2894 (2015). DOI: 10.1109/TNS.2015.2498838
  12. J. Janesick, G. Putnam. Annu. Rev. Nucl. Part. Sci., 53, 263 (2003). DOI: 10.1146/annurev.nucl.53.041002.110431
  13. I. Lombardero, C. Algora. Solar Energy Mater. Solar Cells, 204, 110236 (2020). DOI: 10.1016/j.solmat.2019.110236
  14. R.H. Khasanshin, L.S. Novikov, S.B. Korovin. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 9, 81 (2015). DOI: 10.1134/S1027451015010115
  15. R.Kh. Khasanshin, L.S. Novikov, L.S. Gatsenko, Ya.B. Volkova. Perspektivnye materialy, 1, 22 (2015) (in Russian)
  16. V.V. Serdyuk, Yu.F. Vaksman. Luministsentsiya poluprovodnikov (Vyshcha shk., Kiev-Odessa, 1988) (in Russian)
  17. W.A. Stygar, J.A. Lott, T.C. Wagoner, V. Anaya, H.C. Harjes, H.C. Ives, Z.R. Wallace, G.R. Mowrer, R.W. Shoup, J.P. Corley, R.A. Anderson, G.E. Vogtlin, M.E. Savage, J.M. Elizondo, B.S. Stoltzfus, D.M. Andercyk, D.L. Fehl, T.F. Jaramillo, D.L. Johnson, D.H. McDaniel, D.A. Muirhead, J.M. Radman, J.J. Ramirez, L.E. Ramirez, R.B. Spielman, K.W. Struve, D.E. Walsh, E.D. Walsh, M.D. Walsh. Phys. Rev. ST Accel. Beams, 8, 050401 (2005). DOI: 10.1103/PhysRevSTAB.8.050401
  18. G.A. Mesyats. PMTF, 5, 138 (1980). (in Russian)
  19. H. Kliem, K. Faliya. IEEE Trans. Diel. El. Ins., 27 (4), 1080 (2020). DOI: 10.1109/TDEI.2020.008526
  20. J. Munoz-Gorriz, D. Blachier, G. Reimbold, F. Campabadal, J. Sune, S. Monaghan, K. Cherkaoui, P.K. Hurley, E. Miranda. IEEE Trans. Dev. Mat. Reliab., 19 (2), 452 (2019). DOI: 10.1109/TDMR.2019.2917138
  21. V.M. Zykov, D.A. Neyman. Tech. Phys., 68 (6), 690 (2023). DOI: 10.61011/TP.2023.06.56522.21-23
  22. S. Li, X. Liu, S.K. Nandi, S.K. Nath, R.G. Elliman. Adv. Funct. Mater., 29, 1905060 (2019). DOI: 10.1002/adfm.201905060
  23. A. Pergament, G. Stefanovich, V. Malinenko, A. Velichko. Adv. Cond. Matt. Phys., 2015 (1), 654840 (2015). DOI: 10.1155/2015/654840
  24. Yu.N. Vershinin. Elektronno-teplovye i detonatsionnye protsessy pri elektricheskom proboe tverdykh dielektrikov (UrO RAN, Ekaterinburg, 2000) (in Russian)
  25. I.F. Punanov, I.S. Zhidkov, S.O. Cholakh. Vysokovol'tnyi nanosekundnyi proboi kondensirovannykh sred: uchebnoye posobiye (Izd-vo Ural'skogo un-ta, Yekaterinburg, 2018) (in Russian)
  26. A.S. Savinykh, G.I. Kanel, I.A. Cherepanov, S.V. Razorenov. Tech. Phys., 61 (3), 388 (2016). DOI: 10.1134/S1063784216030178
  27. T. Goto, Y. Syono, J. Nakai, Y. Nakagawa. Solid State Commun., 18 (11-12), 1607 (1976). DOI: 10.1016/0038-1098(76)90404-X
  28. L. Qi, Y. Xie, Y. Liu, H. Jing, R. Zhang. Optik, 198, 163284 (2019). DOI: 10.1016/j.ijleo.2019.163284
  29. R.E. Brock, P. Hebert, J. Ermer, R.H. Dauskardt. Sol. Energy Mater. Sol. Cells, 179, 178 (2018). DOI: 10.1016/j.solmat.2017.11.009

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru