Synapse-resistor based on semiconductor-metal transition in vanadium dioxide
Kalmykov D. A. 1, Aliev V.Sh. 1,2, Bortnikov S.G. 1
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
Email: kalmykov@isp.nsc.ru, aliev@isp.nsc.ru, bortnik@isp.nsc.ru

PDF
An artificial synapse (synapse-resistor) for neuromorphic circuits has been developed and investigated; its operating principle is based on the use of semiconductor-metal phase transition in vanadium dioxide. Vanadium dioxide polycrystalline thin films were synthesized by ion-beam sputtering-deposition method. The synapse-resistor was formed by photolithography on SiO2 membrane. The linear dimensions of the synapse-resistor are ~ 100 μm. The electrical characteristics were investigated and the possibility of controlling the resistance of the synapse-resistor by electrical pulses was demonstrated. The performance of the synapse-resistor at the specified dimensions was about 20 μs. An electrical scheme of McCulloch-Pitts artificial neuron realization based on synapse-resistors was proposed. The synapse-resistor design allows scaling down to the size of a few microns, which will reduce power consumption and increase performance by more than 100 times. Keywords: vanadium dioxide, semiconductor-metal phase transition, artificial synapse, analog neural networks.
  1. A.N. Gorban', V.L. Dunin-Barkovskii, A.N. Kirdin, E.M. Mirkes, A.Yu. Novokhod'ko, D.A. Rossiev, S.A. Terekhov, M.Yu. Senashova, V.G. Tsaregorodtsev. Neiroinformatika (Nauka, Novosibirsk, 1998), ISBN 5-02-031410-2 (in Russian)
  2. A.N. Gorban. Mir PK, 10, 126 (1994) (in Russian).
  3. A.N. Gorban. Neuroinformatics: What are us, where are we going, how to measure our way? The lecture was given at the USA-NIS Neurocomputing opportunities workshop, Washington DC, July 1999. http://arxiv.org/abs/cond-mat/0307346
  4. L.G. Komartsova, A.V. Maksimov. Neirokomp'yutery (Izd-vo MGTU im. N.E. Baumana, M., 2004), ISBN 5-7038-2554-7 (in Russian)
  5. T. Shibata, T. Ohmi. IEEE Transactions on Electron Devices, 40 (3), 570 (1993). DOI: 10.1109/16.199362
  6. Yang Zhang, Zhongrui Wang, Jiadi Zhu, Yuchao Yang, Mingyi Rao, Wenhao Song, Ye Zhuo, Xumeng Zhang, Menglin Cui, Linlin Shen, Ru Huang, J. Joshua Yang. Appl. Phys. Rev., 7, 011308 (2020). DOI: 10.1063/1.5124027
  7. A. Sebastian, M. Le Gallo, G.W. Burr, S. Kim, M. BrightSky, E. Eleftheriou. J. Appl. Phys., 124 (11), (2018). DOI: 10.1063/1.5042413
  8. M. Rao, H. Tang, J. Wu, W. Song, M. Zhang, W. Yin, Y. Zhuo, F. Kiani, B. Chen, X. Jiang, H. Liu, H.-Yu Chen, R. Midya, F. Ye, H. Jiang, Zh. Wang, M. Wu, M. Hu, H. Wang, Q. Xia, N. Ge, J. Li, J.J. Yang. Nature, 615, 823 (2023). DOI: 10.1038/s41586-023-05759-5
  9. F.J. Morin. Phys. Rev. Lett., 3 (1), 34 (1959)
  10. W. Yi, K.K. Tsang, S.K. Lam, X. Bai, J.A. Crowell, E.A. Flores. Nat. Commun., 9 (1), 4661 (2018). DOI: 10.1038/s41467-018-07052-w
  11. T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, D. N. Basov. Appl. Phys. Lett., 95, 043503 (2009). DOI: 10.1063/1.3187531
  12. S.H. Bae, S. Lee, H. Koo, L. Lin, B.H. Jo, C. Park, Z.L. Wang. Adv. Mater., 25 (36), 5098 (2013). DOI: 10.1002/adma.201302511
  13. Y. Zhou, Z. Yang, S. Ramanathan. IEEE Electron Dev. Lett., 33 (1), 101 (2012). DOI: 10.1109/LED.2011.2173790
  14. V.Sh. Aliev, S.G. Bortnikov. Sinapticheskii rezistor (Pat. RF N 2701705, Data gos. reg.: 30.09.2019) (in Russian)
  15. V.A. Shvets, V.Sh. Aliev, D.V. Gritsenko, S.S. Shaimeev, E.V. Fedosenko, S.V. Rykhlitski, V.V. Atuchin, V.A. Gritsenko, V.M. Tapilin, H. Wong. J. Non-Crystall. Solids, 354, 3025 (2008). DOI: 10.1016/j.jnoncrysol.2007.12.013
  16. N. A. Torkhov. Semiconductors, 53 (1), 28 (2019). DOI: 10.1134/S1063782619010226
  17. D.A. Kalmykov, S.G. Bortnikov, V.S. Aliev. In Proceedings of 2023 IEEE 24th International Conference of Young Professionals in Electron Devices and Materials (EDM), p. 50-53 (2023). DOI: 10.1109/EDM58354.2023.10225019
  18. V.Sh. Aliev, M.A. Dem'yanenko, D.G. Esaev, I.V. Marchishin, V.N. Ovsyuk, B.I. Fomin. UPF, 1 (4), 471 (2013) (in Russian)
  19. M.K. Sohn, H. Singh, E.M. Kim, G.S. Heo, S.W Choi, D.G. Phyun, D.J. Kang. Appl. Phys. Lett., 120, 173503 (2022). DOI: 10.1063/5.0088979
  20. R.A. Aliev, V.N. Andreev, V.A. Klimov, V.M. Lebedev, S.E. Nikitin, E.I. Terukov, E.B. Shadrin. ZhTF, 75 (6), 81 (2005) (in Russian)
  21. L.A.L. de Almeida, G.S. Deep, A.N. Lima, H.F. Neff, R.C.S. Freire. IEEE Transactions on Instrument. Measurement, 50 (4), 1030 (2001). DOI: 10.1109/19.948321
  22. M. Gurvitch, A. Luryi, Polyakov, A. Shabalov. J. Appl. Phys., 106, 104504 (2009). DOI: 10.1063/1.3243286

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru