Anishchenko S.V.1, Gurinovich A.A.1
1Institute for Nuclear Problems, Belarusian State University, Minsk, Belarus
Email: sanishchenko@mail.ru, sa_shen_ka@yahoo.com
Electron interaction with matter which it passes through, significantly changes its velocity both in magnitude and direction due to multiple scattering and energy losses. Thus, a beam of electrons incident on a target forms flows of charged particles reflected from and passing through matter. The intensities of these flows depend significantly on the matter properties, the initial energy of beam particles and the angle of electron incidence on a target. In devices with an oscillating virtual cathode, energy losses and multiple scattering of relativistic electrons in the anode mesh lead to formation of an electron cloud near the anode. The cloud particles possess large spread in velocities. The electrons captured by the cloud do not participate in the oscillations of the virtual cathode and partially block a vircator. As a result, the amplitude of the electric field oscillations is reduced. In order to increase the oscillation amplitude, the thickness of the anode mesh should be approximately equal to the mean free path of electrons in the mesh material. Keywords: Multiple scattering, ionization energy losses, vircator, reflex triode.
- J.M. Creedon. J. Appl. Phys., 68 (11), 5494 (1990). DOI: 10.1063/1.347008
- M.J. Berger. In Methods in Computational Physics, ed. by B. Alder, S. Fernbach, M. Rotenberg (Academic Press, NY., 1963), v. 1, p. 135
- S.M. Seltzer. Intern. J. Radiation Appl. Instrum. Part A. Appl. Radiation and Isotopes, 42 (10), 917 (1991). DOI: 10.1016/0883-2889(91)90050-B
- J.M. Fernandez-Varea, R. Mayol, J. Baro, F. Salvat. Nucl. Instrum. Methods Phys. Res. B, 73, 447 (1993). DOI: 10.1016/0168-583X(93)95827-R
- S. Gouldsmit, J.L. Saunderson. Phys. Rev., 57, 244 (1940). DOI: 10.1103/PhysRev.57.24
- F. Rohrlich, B.C. Carlson. Phys. Rev. J., 93, 38 (1954). DOI: 10.1103/PhysRev.93.38
- R.H. Pratt, Atomic Data Nucl. Data Tables, 20 (2), 175 (1977). DOI: 10.1016/0092-640X(77)90045-6
- A.P. Onuchin. Eksperimental'nye metody yadernoi fiziki (Izd-vo NGTU, Novosibirsk, 2010) (in Russian)
- M.J. Berger. NBS, TN-187 (1963)
- S.M. Seltzer, M.J. Berger. Nucl. Instrum. Methods, 119, 157 (1974). DOI: 10.1016/0029-554X(74)90747-2
- T. Tabata, S. Okabe. Nucl. Instrum. Methods, 94, 509 (1971). DOI: 10.1016/0029-554X(71)90013-9
- R. Ito, P. Andreo, T. Tabata, Bull. Univer. Osaka Prefecture, Series A, 41 (2), 69 (1993)
- A.A. Rukhadze, S.D. Stolbetsov, V.P. Tarakanov. RE, (in Russian). 37 (3), 385 (1992)
- A.E. Dubinov, V.D. Selemir. RE, 47 (6), 645 (2002) (in Russian)
- A.E. Dubinov, V.D. Selemir, I.Yu. Kornilova. UFN, (in Russian). 172 (11), 1225 (2002). DOI: 10.3367/UFNr.0172.200211a.1225
- A.E. Dubinov, I.A. Efimova, I.Yu. Kornilova, S.K. Saikov, V.D. Selemir, V.P. Tarakanov. EChAYa, 35 (2), 460 (2004) (in Russian)
- V.P. Tarakanov. EPJ Web Conf., 149, 04024 (2017). DOI: 10.1051/epjconf/201714904010
- A.E. Dubinov, V.P. Tarakanov, Pis'ma v ZhTF, 45 (15), 14 (2019) (in Russian). DOI: 10.21883/PJTF.2019.15.48079.17805
- S.N. Andreev, Y.K. Kurilenkov, A.V. Oginov. Mathematics, 11, 4009 (2023). DOI: 10.3390/math11184009
- H.W. Lewis. Phys. Rev., 78, 526 (1950). DOI: 10.1103/PhysRev.78.526
- A.S. Roshal. Modelirovanie zaryazhennykh puchkov (Atomizdat, M., 1979) (in Russian)
- Ch. Bedsel, A. Lengdon. Fizika plazmy i chislennoe modelirovanie (Energoatomizdat, M., 1989) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.