Energy balance in the coherent scattering of radiation by a system of many particles
L.A. Apresyan1, V.I. Krasovsky1, S.I. Rasmagin 1
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: leon_apresyan@mail.ru
Using a unified description of the fields of incident and scattered waves, the energy balance conditions for time-averaged energy fluxes during the scattering of a monochromatic wave created by an arbitrary radiation source on a system of particles interacting through scattered fields are considered. A "duality lemma" is obtained for local values of energy fluxes, similar to Lorentz lemma for fields from two sources and determining the redistribution of energy fluxes between scatterers and the source. The total energy flow is divided into "energy" and "interference" parts, each of which has its own source function localized on particles, and which are preserved during propagation in free space. The variants of the optical theorem corresponding to various subsystems (clusters) are described, as well as their relationship to the Purcell factor. The result is a detailed picture of energy exchange for arbitrarily chosen clusters of interacting particles. Keywords: multiple scattering, coherent radiation source, energy conservation, optical theorem, Purcell effect, radiation losses.
- J.D. Jackson. Classical electrodynamics, 3-rd eds. (Wiley, NY., 1999)
- L. Novotny, B. Hecht. Osnovy nanooptiki (Fizmatlit, M., 2009) (in Russian)
- B.A. Lippmann, J. Schwinger. Phys. Rev. Lett., 79 (3), 469 (1950). DOI: 10.1103/PhysRev.79.469
- S. Chandrasekar. Perenos luchistoi energii (Izd-vo IL., M., 1953) (in Russian)
- L.A. Apresyan, Yu.A. Kravtsov. Teoriya perenosa izlucheniya: statisticheskie i volnovye aspekty (Nauka, M., 1983; Engl. expanded ed.: Gordon and Breach, Amsterdam, 1996) (in Russian)
- H. Shim, Z. Kuang, Z. Lin, O.D. Miller. Nanophotonics, 13 (12), 2107 (2024). DOI: 10.1515/nanoph-2023-0630
- Z. Kuang, L. Zhang, O.D. Miller. Optica, 7, 1746 (2020). DOI: 10.1364/OPTICA.398715
- Y. Ivanenko, M. Gustafsson, S. Nordebo. Opt. Express, 27 (23), 34323 (2019). DOI: 10.1364/OE.27.0347323
- S. Boyd, L. Vandenberghe. Convex optimization (Cambridge Univ. Press, 2004)
- J.R. Taylor. Scattering theory. The quantum theory of nonrelativistic collisions (Wiley, NY., 1972)
- R.G. Newton. Am. J. Phys., 44 (7), 639 (1976)
- M. Venkatapathi. JQSRT, 113 (13), 1705 (2012). DOI: 10.1016/j.jqsrt.2012.04.019
- A.E. Moskalensky, M.A. Yurkin. Phys. Rev., A 99, 053824 (2019). DOI: 10.1103/PhysRevA.99.053824
- L.A. Apresyan. J. Ac. Soc. Am., 150, 2024 (2021). DOI: 10.1121/10.0005915
- L.A. Apresyan, T.V. Vlasova, V.I. Krasovskii. Phys. Wave Phen., 32, 19 (2024). DOI: 10.3103/S1541308X24010011
- L.A. Apresyan. ZhTF, 93 (3), 332 (2023) (in Russian). DOI: 10.21883/JTF.2023.03.54843.254-22
- L.A. Vainshtein. Elektromagnitnye volny (Radio i Svyaz', Moscow, 1988) (in Russian)
- G. Ios. Kurs teoreticheskoi fiziki. Ch. 1. Mekhanika i elektrodinamika (Nauka, M., 1963) (in Russian)
- C.R. Simovski. Opt. Lett., 44 (11), 2697 (2019). DOI: 10.1364/OL.44.002697
- F.R. Gantmakher. Teoriya matrits (Nauka, M., 1966) (in Russian)
- P. de Vries, D.V. van Coevorden, A. Lagendijk. Rev. Mod. Phys., 70 (2), 447 (1998). DOI: 10.1103/revmodphys.70.447
- V.S. Asadchy, M.S. Mirmoosa, A. Diaz-Rubio, S. Fan, S.A. Tretyakov. Proc. IEEE, 108 (10), 1684 (2020). DOI: 10.1109/JPROC.2020.3012381
- A.E. Moskalensky, M.A. Yurkin. Rev. Phys., 6, 100047 (2021). DOI: 10.1016/j.revip.2020.100047
- E.A. Marengo, J. Tu. Progr. Electromagn. Res., B 65, 1 (2016). DOI: 10.2528/PIERB15110506
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.