S.Yu. Khripchenko1, E.Yu. Tonkov1
1Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences, Perm, Russia
Email: tonkov.e@icmm.ru
Modern trends in the development of the aviation and aerospace technology suggest the necessity of constant expansion of the production capacity of both manufacturing plants and raw material suppliers. Aluminum and aluminum alloys are among the preferred metals in this field of industry. The use of MHD stirrers is advantageous for manufacturing cylindrical ingots from aluminum and aluminum alloys during the continuous casting process. By setting specific liquid metal stirring flow parameters, one can change the structure of ingots and produce high-quality ingots essential for designing high-performance products. In this regard, an urgent question arises about the dimensions of MHD stirrers that are needed to place a maximum number of crystallizers on a casting table. In this paper, we consider different designs of MHD stirrers for machines of continuous casting of aluminum ingots. The goal is to compare the efficiency of these devices by analyzing the electromagnetic fields produced by stirrers in liquid metal using mathematical modeling techniques. We also present a fundamentally new design scheme of a rotating magnetic field inductor with inclined core poles. The application of this inductor helps to significantly decrease the dimensions of MHD stirrers, to place a sufficient amount of MHD stirrers and crystallizers on a casting table and to reduce the production costs of aluminum cylindrical ingots. Keywords: MHD stirrer, travelling magnetic field inductor, rotating magnetic field inductor,, toroidal flow, poloidal flow, COMSOL Multiphysics, inclined poles.
- V.G. Borisov. Light Alloy Technol., 50 (2), 48 (2016)
- C. Mapelli, A. Gruttadauria, W. Peroni. J. Mater. Processing Technol., 210 (2), 306 (2010). DOI: 10.1016/j.jmatprotec.2009.09.016
- V.G. Borisov. Metallurgist, 52 (11--12), 672 (2008)
- Yu.M. Gelfgat, Yu. Krumins, M. Abricka. Magnetohydrodynamics, 35 (1), 1 (1999)
- S. Denisov, V. Dolgikh, S. Khripchenko, I. Kolesnichenko, L. Nikulin. Magnetohydrodynamics, 50 (4), 407 (2014)
- A.Yu. Vasil'ev, I.V. Kolesnichenko, A.D. Mamykin, P.G. Frik, R.I. Khalilov, S.A. Rogozhkin, V.V. Pakholkov. ZhTF, 85 (9), 45 (2015) (in Russian)
- S. Yu. Khripchenko. J. Engineer. Phys. Thermophys., 95 (5), 1126 (2022). DOI: 10.1007/s10891-022-02577-w
- B. Willers, S. Eckert, P. A. Nikrityuk, D. Rabiger, J. Dong, K. Eckert, G. Gerbeth. Metall. Mater. Trans. B, 39B, 304 (2008)
- D. Rabiger, S. Eckert, G. Gerbeth, S. Franke, J. Czarske. Magnetohydrodynamics, 48 (1), 213 (2012)
- S. Khripchenko, S. Denisov. Magnetohydrodynamics, 56 (4), 427 (2020). DOI: 10.22364/mhd.56.4.1
- J. Stiller, K. Koal, W.E. Nagel, J. Pal, A. Cramer. Eur. Phys. J. Special Topics, 220, 111 (2013)
- M.Yu. Kuchinskii. Elektrotechnologiya peremeshivaniya zhidkoi serdtseviny slitkov v mnogoruch'evom liteinom komplekse (Kand. diss., Krasnoyarsk, 2022), 103 s. (in Russian)
- M.V. Pervukhin, M.Yu. Kuchinskii, S.P. Timofeev. Zhurnal SFU. Tekhnika i tekhnologii, 12 (8), 952 (2019) (in Russian)
- S.Yu. Khripchenko, V.G. Borisov. Ustroistvo dlya peremeshivaniya elektroprovodnykh zhidkikh sred. (Pat. N 2830293 Zayavka N 2024118853 Prioritet izobreteniya 04 iyulya 2024 g. Gos. registratsiya 18 noyabrya 2024 g.) (in Russian)
- E. Shvydkiy, V. Zaharov, K. Bolotin, I. Smolyanov, S. Sarapulov. Magnetohydrodynamics, 53 (4), 707 (2017)
- C.R. Vargas-Llanos, F. Huber, N. Riva, M. Zhang, F. Grilli. Superconductor Sci. Technol., 35, 41 (2022)
- N.E. Jewell-Larsen, S.V. Karpov, I.A. Krichtafovitch, V. Jayanty, Ch.-P. Hsu, A.V. Mamishev. ESA Annual Meeting on Electrostatics, 1, 20 (2008)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.