Electronic Spectrum of Complex One-Dimensional Superlattices (based on semiconductor heterostructures in the Al/Ga/As system)
Dragunov I.E. 1, Pilipenko E.A. 1, Semeniuk J. A.1, Lyubchanskii I.L. 1,2
1Donetsk Institute for Physics and Engineering named after A.A. Galkin, Donetsk, Russia
2Donetsk State University, Donetsk, DPR, Russia
Email: i_dragun60@mail.ru, pilipenko.katerina@mail.ru, julisemenuk@yandex.ru, igorl@donfti.ru

PDF
A one-dimensional superlattice with a complex unit cell consisting of two potential wells and two barriers with different widths and heights is studied within the Kronig-Penney model. A dispersion equation for such a structure is obtained. A numerical analysis of this equation is carried out and the behavior of the electron spectrum of the superlattice GaAs/Al0.5Ga0.5As/GaAs/AlxGa1-xAs is investigated depending on the ratio of the wells and barriers widths, as well as barriers heights Keywords: superlattice, Kronig-Penney model, potential well, potential barrier, band structure.
  1. A.P. Silin. UFN, 147, 485 (1985) (in Russian). DOI: 10.3367/UFNr.0147.198511c.0485
  2. F.G. Bass, A.P. Tetervov. Phys. Repts., 140, 237 (1986). DOI: 10.1016/0370-1573(86)90083-9
  3. F.G. Bass, A.A. Bulgakov, A.P. Tetervov. Vysokochastotnye svoistva poluprovodnikov so sverkhreshetkami (High-frequency properties of semiconductors with superlattices) (Nauka, M., 1989) (in Russian)
  4. M.A. Herman. Semiconductor superlattices (Akad.-Verl.,Berlin, 1986)
  5. D.L. Smith, C. Maihiot. Rev. Mod. Phys., 62, 173 (1990). DOI: 10.1103/RevModPhys.62.173
  6. H.C. Casey, Jr, M.B. Panish. Heterostructure lasers (Academic Press, New York 1978)
  7. E.L. Ivchenko, G.E. Pikus. Superlattices and Other Heterostructures: Symmetry and Optical Phenomena. 2-nd Edition (Springer, Berlin, 1997)
  8. A. Yariv, P. Yeh. Photonics: Optical Electronics in Modern Communications (Oxford University Press. NY. and Oxford, 2007)
  9. A. Wacker. Phys. Repts. 357, 1 (2002). DOI: 10.1016/S0370-1573(01)00029-1
  10. R. Tsu. Superlattice to Nanoelectronics 2-nd Ed. (Elsevier, Amsterdam, 2011)
  11. S. Roy, C.K. Ghosh, S. Dey, A.K. Pal. Solid State and Microelectronics Technology (Bentham Books, Singapore, 2023)
  12. G. Bastard. Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis Cedex, France, 1988)
  13. J.H. Davies. The physics of low-dimensional semiconductors. An introduction (Cambridge University Press 1998)
  14. V.V. Mitin, V.K. Kochelap, M.A. Stroscio. Quantum Heterostructures: Microelectronics and Optoelectronics (Cambridge University Press, 1999)
  15. E.L. Ivchenko. Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science, Harrow, 2005)
  16. R. de L. Kronig, W.G. Penney. Proc. R. Soc. London, Ser. A., 130, 499 (1931). DOI: 10.1098/rspa.1931.0019
  17. V.L. Bonch-Bruevich, S.G. Kalashnikov, Fizika poluprovodnikov (Physics of Semiconductors) (Nauka, M., 1990) (in Russian)
  18. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, Orlando, 1976)
  19. T.B. Smith, A. Principi. J. Phys.: Condens. Matter, 32, 055502 (2020). DOI: 10.1088/1361-648X/ab4d67
  20. I. Guarneri. J. Phys. A: Math. Theor., 55, 424008 (2022). DOI: 10.1088/1751-8121/ac9356
  21. U. Smilansky. J. Phys. A: Math. Theor., 55, 424007 (2022). DOI: 10.1088/1751-8121/ac9357
  22. T. Li, H. Chen, K. Wang, Yi. Hao, L. Zhang, K. Watanabe, T. Taniguchi, X. Hong. Phys. Rev. Lett., 132, 056204 (2024). DOI: 10.1103/PhysRevLett.132.056204
  23. L. Esaki, L.L. Chang, E.E. Mendez. Jpn. J. Appl. Phys., 20, L529 (1981). DOI: 10.1143/JJAP.20.L529
  24. D.W.L. Sprung, L.W.A. Vanderspek, W. Van Dijk, J. Martorell, C. Pacher. Phys. Rev. B, 77, 035333 (2008). DOI: 10.1103/PhysRevB.77.035333
  25. J.J. Alvarado-Goytia, R. Rodri guez-Gonzalez, J.C. Marti nez-Orozco, I. Rodri guez-Vargas. Scientific Reports, 12, 832 (2022). DOI: 10.1038/s41598-021-04690-x
  26. M. Coquelin, C. Pacher, M. Kast, G. Strasser, E. Gornik. Phys. Stat. Sol. (b), 243, 3692 (2006). DOI: 10.1002/pssb.200642246
  27. J.P. Ruz-Cuen, J.C. Gutierrez-Vega. J. Opt. Soc. Am. B., 38, 2742 (2021). DOI: 10.1364/JOSAB.424431
  28. B. Djafari-Rouhani, L. Dobrzynski. Sol. St. Comms., 62, 609 (1987). DOI: 10.1016/0038-1098(87)90200-6
  29. E.H. El Boudouti, B. Djafari-Rohani, A. Akjoju, L. Dobrzynski, R. Kucharczyk, M. Steslicka. Phys. Rev. B, 56, 9603 (1997). DOI: 10.1103/PhysRevB.56.9603
  30. W.J. Hsueh, J.C. Lin, H.C. Chen. J. Phys.: Condens. Matter, 19, 266007 (2007). DOI: 10.1088/0953-8984/19/26/266007
  31. M. Steslicka, R. Kucharczyk, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, S.G. Davidson. Surf. Sci. Repts., 47, 93 (2002). DOI: 10.1016/S0167-5729(02)00052-3
  32. F.M. Peeters, P. Vasilopoulos, Appl. Phys. Lett. 55, 1106 (1989). DOI: 10.1063/1.101671
  33. G. Bastard. Phys. Rev. B, 25, 7584 (1982). DOI: 10.1103/PhysRevB.25.7584
  34. M. Altarelli. Band Structure, Impurities and Excitons in Superlattices. In: G. Allan, M. Lannoo, G. Bastard, M. Voos, N. Boccara (eds). Heterojunctions and Semiconductor Superlattices (Springer, Berlin, Heidelberg, 1986), DOI: 10.1007/978-3-642-71010-0_2
  35. R. Kucharczyk, M. Steslicka, B. Brzostowski, B. Djafari-Rouhani. Physica E, 5, 280 (2000). DOI: 10.1016/S1386-9477(99)00328-8
  36. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. J. Appl. Phys., 89, 5815 (2001). DOI: 10.1063/1.1368156

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru