Switching of superconducting nanowires from NbN to the normal state and back at high frequency in two-layer structures due to local heating
Gurovich B. A.
1, Goluvev G. Yu.
1, Prikhodko K. E.
1,2, Kutuzov L. V.
1, Komarov D. A.
1, Malieva E. M.
1, Goncharov B. V.
1, Goncharova D. A.
1, Stolyarov V. L.
11National Research Center “Kurchatov Institute”, Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
Email: geolubev@gmail.com
The work of a single element of the device consisting of two galvanically isolated superconducting NbN nanowires in different layers, into one of which a resistance of ~ 1.2 kΩ is integrated at the point of their intersection, is demonstrated. The device actuation (output voltage generation) occurs due to contactless local heating of the superconductor by heat released in the resistive section of the nanowire in the adjacent layer through the separating dielectric layer. In liquid helium (4.2 K), pulse and sinusoidal RF signals, as well as sinusoidal microwave signals at frequencies of 1, 4 and 9 GHz, were fed to the device. It was found that when a pulse RF signal is fed, the response speed of the contactless inverter corresponds to a frequency of ~ 0.83 GHz; when a sinusoidal signal of 100 MHz is fed, a periodic signal of double frequency appears at the output; When a microwave signal is applied, peaks at double the frequency (2, 8 and 18 GHz) are observed on the frequency spectrum, which indicates the possibility of the device operating at frequencies up to 18 GHz. Keywords: NbN nanowire, superconductivity, microwave, contactless inverter, cryotron, "Y-tron", "h-tron".
- R.W. Keyes. Proceedings IEEE, 89 (3), 227 (2001). DOI: 10.1109/5.915372
- V.A. Bespalov, N.A. Dyuzhev, V.Yu. Kireev. Nanobiotechnol. Reports, 17 (1), 24 (2022). DOI: 10.1134/S2635167622010037
- E. Masanet, A. Shehabi, N. Lei, S. Smith, J. Koomey. Science, 367 (6481), 984 (2020). DOI: 10.1126/science.aba3758
- S. Alam, M.S. Hossain, S.R. Srinivasa, A. Aziz. Nature Electron., 6 (3), 185 (2023). DOI: 10.1038/s41928-023-00930-2
- R. Bairamkulov, G. De Micheli. IEEE Circuits Systems Magazine, 24 (2), 16 (2024). DOI: 10.1109/MCAS.2024.3376492
- O.A. Mukhanov. IEEE Transactions Appl. Superconduct., 21 (3), 760 (2011). DOI: 10.1109/TASC.2010.2096792
- J. Ren, G. Tang, F. Wang, S. Li, P. Qu, X. Gao, L.Ying, S. Yang, B. Liu, X. Zhang, X. Gao, W. Peng, Z. Wang. CCF Trans. HPC, 4, 182 (2022). DOI: 10.1007/s42514-022-00114-y
- D.A. Buck. Proc. IRE, 44 (4), 482 (1956). DOI: 10.1109/JRPROC.1956.274927
- V.L. Newhouse, J.W. Bremer. J. Appl. Phys., 30, 1458 (1959). DOI: 10.1063/1.1735362
- K.K. Likharev. Physica C: Superconduct. its Applications, 482, 6 (2012). DOI: 10.1016/j.physc.2012.05.016
- B.A. Gurovich, K.E. Prikhodko, A.G. Domantovsky, V.L. Stolyarov, D.A. Komarov, E.A. Kuleshova, L.V. Kutuzov. Sposob perevoda sverhprovodnika v elementah logiki nanorazmernyh elektronnyh ustrojstv iz sverhprovodyashchego sostoyaniya v normal'noe (Patent 2674063 RF, zayavl. 27.03.2018, opubl. 04.12.2018, Byul. N. 34. 13 p.) (in Russian)
- A.N. McCaughan, K.K. Berggren. Nano Lett., 14 (10), 5748 (2014). DOI: 10.1021/nl502629x
- A.N. McCaughan, S.N. Abebe, Q.Y. Zhao, K.K. Berggren. Nano Lett., 16 (12), 7626 (2016). DOI: 10.1021/acs.nanolett.6b03593
- R. Baghdadi, J.P. Allmaras, B.A. Butters, A.E. Dane, S. Iqbal, A.N. McCaughan, E.A. Toomey, Q.Y. Zhao, A.G. Kozorezov, K.K. Berggren. Phys. Rev. Appl., 14 (5), 054011 (2020). DOI: 10.1103/PhysRevApplied.14.054011
- Q.Y. Zhao, E.A. Toomey, B.A. Butters, A.N. McCaughan, A.E. Dane, S.W. Nam, K.K. Berggren. Supercond. Sci. Technol., 31 (3), 035009 (2018). DOI: 10.1088/1361-6668/aaa820
- B.A. Gurovich, K.E. Prikhodko, L.V. Kutuzov, B.V. Goncharov, D.A. Komarov, E.M. Malieva. FTT, 64 (10), 1390 (2022) (in Russian). DOI: 10.21883/FTT.2022.10.53079.47HH
- B.A. Gurovich, K.E. Prikhodko, E.A. Kuleshova, K.I. Maslakov, D.A. Komarov. ZhETF, 143 (6), 1062 (2013) (in Russian). DOI: 10.7868/S0044451013060062
- M. Tinkham, J.U. Free, C.N. Lau, N. Markovic. Phys. Rev. B, 68 (13), 134515 (2003). DOI: 10.1103/PhysRevB.68.134515
- G.Y. Golubev, K.E. Prikhodko, B.A. Gurovich, D.A. Komarov, E.M. Malieva, B.V. Goncharov, D.A. Goncharova, V.L. Stolyarov. FTT, 66 (6), 859 (2024) (in Russian). DOI: 10.61011/FTT.2024.06.58237.23HH
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.