Upper Buffer Layer Influence on the Current-Carrying Capacity of Coated Conductors
Guryev V. V. 1, Krylov V.E.1, Irodova A.V.1, Kondratiev O.A.1, Shavkin S.V.1
1National Research Center “Kurchatov Institute”, Moscow, Russia
Email: Gurev_VV@nrcki.ru
A systematic comparative analysis of the effect of the upper buffer layer on the transport characteristics of composite high-temperature superconducting tapes is performed. Two most common materials, cerium dioxide CeO2 and lanthanum manganite LaMnO3, are studied. It is shown that replacing CeO2 with LaMnO3 leads to an increase in the characteristic thickness of the superconducting layer, on which the critical current density drops by a factor of e, from 0.9 to 1.2 μm. When the external magnetic field is oriented in the plane of the tape, samples of both architectures showed the same critical current. When the field is oriented perpendicularly, samples with LaMnO3 demonstrated higher critical currents, which indicates an increase in the concentration of pinning centers perpendicular to the tape plane. Due to the lack of self-epitaxy for LaMnO3, it cannot completely replace CeO2 on substrates with a moderate texture. Keywords: current-carrying capacity, buffer layers, cerium dioxide, lanthanum manganite, anisotropic pinning model, cooperative potential well.
- J.G. Bednorz, K.A. Muller. Z. Physik B --- Condensed Matter., 64, 189 (1986). https://doi.org/10.1007/BF01303701
- J.L. MacManus-Driscoll, S.C. Wimbush. Nature Rev. Mater., 6, 587 (2021). https://doi.org/10.1038/s41578-021-00290-3
- K. Heine, J. Tenbrink, M. Thoner. Appl. Phys. Lett., 55, 23 (1989). https://doi.org/10.1063/1.102295
- T.D. Aksenova, P.V. Bratukhin, S.V. Shavkin, V.L. Melnikov, E.V. Antipova, N.E. Khlebova, A.K. Shikov. Physica C, 205 3-4 (1993). https://doi.org/10.1016/0921-4534(93)90392-4
- A. Gurevich. Nature Mater., 10, 255 (2011). https://doi.org/10.1038/nmat2991
- N.A. Moshchalkova. V sb.: Obzory po vysokotemperaturnoi sverkhprovodimosti, pod red. T.Yu. Maslennikova (MTsNTI, M. 1990), v. 1 (in Russian)
- B. Holzapfel, J. Wiesmann. In: Handbook of superconductivity, ed. by A. Gardwell, C. Larbalestier, I Braginski (CRC Press, 2023), v. II
- J.M. Phillips. J. Appl. Phys., 79, 1829 (1996). https://doi.org/10.1063/1.362675
- S.R. Foltyn, P.N. Arendt, Q.X. Jia, J.L. MacManus-Driscoll, L. Stan, Y. Li, X. Zhang, P.C. Dowden. J. Mater. Research., 19, 6 (2011). https://doi.org/10.1557/JMR.2004.0244
- M.T. Paulose, J.S. Sandra, M.A. Sayeed, V. Selvamanickam. IEEE Trans Appl. Supercond., 35, 5 (2025). https://doi.org/10.1109/TASC.2024.3513942
- T. Montini, M. Melchionna, M. Monai, P. Fornasiero. Chem. Rev., 116 (2016). https://doi.org/10.1021/acs.chemrev.5b00603
- K. Ackland, J.M.D. Coey. Phys. Reports, 746, 1 (2018). https://doi.org/10.1016/j.physrep.2018.04.002
- P. Rivero, V. Meunier, W. Shelton. Phys. Rev. B, 93, 024111 (2016). https://doi.org/10.1103/PhysRevB.93.024111
- W. Wong-Ng, Z. Yang, G. Liu, Q. Huang, L.P. Cook, S. Diwanji, C. Lucas, M.-H. Jang, J.A. Kaduk. In: Advances and Applications in Electroceramics, ed. by K.M. Nair. et al. (Wiley, 2011)
- F. Fan, Y. Lu, Z. Liu, D. Zhou, Y. Guo, C. Bai, M. Li, C. Cai. Supercond. Sci. Technol., 33, 055003 (2020). https://doi.org/10.1088/1361-6668/ab7c51
- K. Venkataraman, E. Hellstrom. J. Mater. Res., 24, 4 (2009). https://doi.org/10.1557/JMR.2009.0180
- S. Dong-Qi, M. Ping, K. Rock-Kil, K. Ho-Sup, C. Jun-Ki, S. Kyu-Jeong, P. Chan. Chin. Phys. Soc., 16, 7 (2007). https://doi.org/10.1088/1009-1963/16/7/058
- A.V. Boryakov, D.V. Masterov, S.A. Pavlov, A.E. Parafin, P.A. Yunin. FTT, 66, 6 (2024) (in Russian). DOI: 10.61011/FTT.2024.06.58235.20HH
- V.V. Gur'ev, I.V. Kulikov, I.M. Abdyukhanov, M.V. Alekseev, Yu.N. Belotelova, P.V. Volkov, P.V. Konovalov, V.S. Kruglov, V.E. Krylov, D.V. Lazarev, A.A. Nikonov, A.V. Ovcharov, D.N. Rakov, S.V. Shavkin. FTT, 65, 12 (2023). http://dx.doi.org/10.61011/FTT.2023.12.56725.5015k (in Russian)
- V.V. Gur'ev, V.E. Krylov, I.V. Kulikov, I.M. Abdyukhanov, M.V. Alekseev, Yu.N. Belotelova, P.V. Konovalov, P.A. Luk'yanov, M.V. Mal'tseva, S.N. Nikolaev, S.V. Shavkin. FTT, 12 (2024). http://journals.ioffe.ru/articles/59565 (in Russian)
- A.V. Irodova, I.D. Karpov, V.S. Kruglov, V.E. Krylov, S.V. Shavkin, V.T. Em. ZhTF. 91, 12 (2021). http://dx.doi.org/10.21883/JTF.2021.12.51761.169-21 (in Russian)
- T. Taneda, M. Yoshizumi, T. Takahashi, R. Kuriki, T. Shinozaki, T. Izumi, Y. Shiohara, Y. Iijima, T. Saitoh, R. Yoshida, T. Kato, T. Hirayama, T. Kiss. IEEE Trans. Appl. Supercond., 3 (2013). https://doi.org/10.1109/TASC.2012.2235113
- H. Hilgenkamp, J. Mannhart. Rev. Modern Phys., 74 (2002). https://doi.org/10.1103/RevModPhys.74.485
- V. Guryev, S. Shavkin, V. Kruglov. J. Phys.: Conf. Ser., 2103 (2021). https://doi.org/10.1088/1742-6596/2103/1/012096
- V.V. Gur'ev, S.V. Shavkin, I.V. Kulikov. VANT: seriya termoyadernyi sintez, 47, 3 (2024) (in Russian). DOI: 10.21517/0202-3822-2024-47-3-93-107
- E.Yu. Klimenko, S.V. Shavkin, P.V. Volkov. J. Exp. Theor. Phys., 85, 3 (1997). https://doi.org/10.1134/1.558341
- S. Shavkin,V. Guryev, V. Kruglov, A. Ovcharov, I. Likhachev, A. Vasiliev, A. Veligzhanin, Y. Zubavichus. EPJ Web Conf., 182 (2018). doi.org/10.1051/epjconf/201818508007
- V.V. Guryev, S.V. Shavkin, V.S. Kruglov. Physica C, 599, 1354080 (2022). https://doi.org/10.1016/j.physc.2022.1354080
- V.V. Guryev, S.V. Shavkin, V.S. Kruglov. J. Phys.: Conf. Ser., 1697 (2020). doi.org/10.1088/1742-6596/1697/1/012202
- V.V. Guryev, A.V. Irodova, N.K. Chumakov, S.V. Shavkin. St. Petersburg State Polytechnical University J. Phys. Mathemat., 16, 1.1 (2023). https://doi.org/10.18721/JPM.161.111
- J. Lee, J. Bang, G. Bradford, D. Abraimov, E. Bosque, D. Larbalestier. IEEE Trans. Appl. Supercond., 35, 5 (2025). https://doi.org/10.1109/TASC.2024.3505115
- J. Ye, K. Nakamura. Phys. Rev. B, 48, 10 (1993). https://doi.org/10.1103/PhysRevB.48.7554
- G. Majkic. In: Superconductivity. From Materials Science to Practical Applications, ed. by Mele (Springer, 2020)
- A.E. Shchukin, A.R. Kaul'. Inorg Mater., 58 (2022). https://doi.org/10.1134/S0020168522130015
- Z.L. Wang, D.H. Lowndes, D.K. Christen, D.M. Kroeger, C.E. Klabunde, D.P. Norton. Physica C, 252, 1-2 (1995). https://doi.org/10.1016/0921-4534(95)00428-9
- Y.V. Cherpak, V.A. Komashko, S.A. Pozigun, A.V. Semenov, C.G. Tretiatchenko, E.A. Pashitski, V.M. Pan. IEEE Trans. Appl. Supercond., 15, 2 (2005). https://doi.org/10.1109/TASC.2005.848212
- T.G. Holesinger, S.R. Foltyn, P.N. Arendt, Q. Jia, P.C. Dowden, R.F. DePaula, J.R. Groves. IEEE Trans. Appl. Supercond., 11, 1 (2001). https://doi.org/10.1109/77.919783
- M.Z. Khan, E. Rivasto, Y. Wu, Y. Zhao, C. Chen, J. Zhu, H. Palonen, J. Tikkanen, H. Huhtinen, P. Paturi. J. Phys.: Conf. Ser., 1559 (2020). https://doi.org/10.1088/1742-6596/1559/1/012037
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.