Upper Buffer Layer Influence on the Current-Carrying Capacity of Coated Conductors
Guryev V. V. 1, Krylov V.E.1, Irodova A.V.1, Kondratiev O.A.1, Shavkin S.V.1
1National Research Center “Kurchatov Institute”, Moscow, Russia
Email: Gurev_VV@nrcki.ru

PDF
A systematic comparative analysis of the effect of the upper buffer layer on the transport characteristics of composite high-temperature superconducting tapes is performed. Two most common materials, cerium dioxide CeO2 and lanthanum manganite LaMnO3, are studied. It is shown that replacing CeO2 with LaMnO3 leads to an increase in the characteristic thickness of the superconducting layer, on which the critical current density drops by a factor of e, from 0.9 to 1.2 μm. When the external magnetic field is oriented in the plane of the tape, samples of both architectures showed the same critical current. When the field is oriented perpendicularly, samples with LaMnO3 demonstrated higher critical currents, which indicates an increase in the concentration of pinning centers perpendicular to the tape plane. Due to the lack of self-epitaxy for LaMnO3, it cannot completely replace CeO2 on substrates with a moderate texture. Keywords: current-carrying capacity, buffer layers, cerium dioxide, lanthanum manganite, anisotropic pinning model, cooperative potential well.
  1. J.G. Bednorz, K.A. Muller. Z. Physik B --- Condensed Matter., 64, 189 (1986). https://doi.org/10.1007/BF01303701
  2. J.L. MacManus-Driscoll, S.C. Wimbush. Nature Rev. Mater., 6, 587 (2021). https://doi.org/10.1038/s41578-021-00290-3
  3. K. Heine, J. Tenbrink, M. Thoner. Appl. Phys. Lett., 55, 23 (1989). https://doi.org/10.1063/1.102295
  4. T.D. Aksenova, P.V. Bratukhin, S.V. Shavkin, V.L. Melnikov, E.V. Antipova, N.E. Khlebova, A.K. Shikov. Physica C, 205 3-4 (1993). https://doi.org/10.1016/0921-4534(93)90392-4
  5. A. Gurevich. Nature Mater., 10, 255 (2011). https://doi.org/10.1038/nmat2991
  6. N.A. Moshchalkova. V sb.: Obzory po vysokotemperaturnoi sverkhprovodimosti, pod red. T.Yu. Maslennikova (MTsNTI, M. 1990), v. 1 (in Russian)
  7. B. Holzapfel, J. Wiesmann. In: Handbook of superconductivity, ed. by A. Gardwell, C. Larbalestier, I Braginski (CRC Press, 2023), v. II
  8. J.M. Phillips. J. Appl. Phys., 79, 1829 (1996). https://doi.org/10.1063/1.362675
  9. S.R. Foltyn, P.N. Arendt, Q.X. Jia, J.L. MacManus-Driscoll, L. Stan, Y. Li, X. Zhang, P.C. Dowden. J. Mater. Research., 19, 6 (2011). https://doi.org/10.1557/JMR.2004.0244
  10. M.T. Paulose, J.S. Sandra, M.A. Sayeed, V. Selvamanickam. IEEE Trans Appl. Supercond., 35, 5 (2025). https://doi.org/10.1109/TASC.2024.3513942
  11. T. Montini, M. Melchionna, M. Monai, P. Fornasiero. Chem. Rev., 116 (2016). https://doi.org/10.1021/acs.chemrev.5b00603
  12. K. Ackland, J.M.D. Coey. Phys. Reports, 746, 1 (2018). https://doi.org/10.1016/j.physrep.2018.04.002
  13. P. Rivero, V. Meunier, W. Shelton. Phys. Rev. B, 93, 024111 (2016). https://doi.org/10.1103/PhysRevB.93.024111
  14. W. Wong-Ng, Z. Yang, G. Liu, Q. Huang, L.P. Cook, S. Diwanji, C. Lucas, M.-H. Jang, J.A. Kaduk. In: Advances and Applications in Electroceramics, ed. by K.M. Nair. et al. (Wiley, 2011)
  15. F. Fan, Y. Lu, Z. Liu, D. Zhou, Y. Guo, C. Bai, M. Li, C. Cai. Supercond. Sci. Technol., 33, 055003 (2020). https://doi.org/10.1088/1361-6668/ab7c51
  16. K. Venkataraman, E. Hellstrom. J. Mater. Res., 24, 4 (2009). https://doi.org/10.1557/JMR.2009.0180
  17. S. Dong-Qi, M. Ping, K. Rock-Kil, K. Ho-Sup, C. Jun-Ki, S. Kyu-Jeong, P. Chan. Chin. Phys. Soc., 16, 7 (2007). https://doi.org/10.1088/1009-1963/16/7/058
  18. A.V. Boryakov, D.V. Masterov, S.A. Pavlov, A.E. Parafin, P.A. Yunin. FTT, 66, 6 (2024) (in Russian). DOI: 10.61011/FTT.2024.06.58235.20HH
  19. V.V. Gur'ev, I.V. Kulikov, I.M. Abdyukhanov, M.V. Alekseev, Yu.N. Belotelova, P.V. Volkov, P.V. Konovalov, V.S. Kruglov, V.E. Krylov, D.V. Lazarev, A.A. Nikonov, A.V. Ovcharov, D.N. Rakov, S.V. Shavkin. FTT, 65, 12 (2023). http://dx.doi.org/10.61011/FTT.2023.12.56725.5015k (in Russian)
  20. V.V. Gur'ev, V.E. Krylov, I.V. Kulikov, I.M. Abdyukhanov, M.V. Alekseev, Yu.N. Belotelova, P.V. Konovalov, P.A. Luk'yanov, M.V. Mal'tseva, S.N. Nikolaev, S.V. Shavkin. FTT, 12 (2024). http://journals.ioffe.ru/articles/59565 (in Russian)
  21. A.V. Irodova, I.D. Karpov, V.S. Kruglov, V.E. Krylov, S.V. Shavkin, V.T. Em. ZhTF. 91, 12 (2021). http://dx.doi.org/10.21883/JTF.2021.12.51761.169-21 (in Russian)
  22. T. Taneda, M. Yoshizumi, T. Takahashi, R. Kuriki, T. Shinozaki, T. Izumi, Y. Shiohara, Y. Iijima, T. Saitoh, R. Yoshida, T. Kato, T. Hirayama, T. Kiss. IEEE Trans. Appl. Supercond., 3 (2013). https://doi.org/10.1109/TASC.2012.2235113
  23. H. Hilgenkamp, J. Mannhart. Rev. Modern Phys., 74 (2002). https://doi.org/10.1103/RevModPhys.74.485
  24. V. Guryev, S. Shavkin, V. Kruglov. J. Phys.: Conf. Ser., 2103 (2021). https://doi.org/10.1088/1742-6596/2103/1/012096
  25. V.V. Gur'ev, S.V. Shavkin, I.V. Kulikov. VANT: seriya termoyadernyi sintez, 47, 3 (2024) (in Russian). DOI: 10.21517/0202-3822-2024-47-3-93-107
  26. E.Yu. Klimenko, S.V. Shavkin, P.V. Volkov. J. Exp. Theor. Phys., 85, 3 (1997). https://doi.org/10.1134/1.558341
  27. S. Shavkin,V. Guryev, V. Kruglov, A. Ovcharov, I. Likhachev, A. Vasiliev, A. Veligzhanin, Y. Zubavichus. EPJ Web Conf., 182 (2018). doi.org/10.1051/epjconf/201818508007
  28. V.V. Guryev, S.V. Shavkin, V.S. Kruglov. Physica C, 599, 1354080 (2022). https://doi.org/10.1016/j.physc.2022.1354080
  29. V.V. Guryev, S.V. Shavkin, V.S. Kruglov. J. Phys.: Conf. Ser., 1697 (2020). doi.org/10.1088/1742-6596/1697/1/012202
  30. V.V. Guryev, A.V. Irodova, N.K. Chumakov, S.V. Shavkin. St. Petersburg State Polytechnical University J. Phys. Mathemat., 16, 1.1 (2023). https://doi.org/10.18721/JPM.161.111
  31. J. Lee, J. Bang, G. Bradford, D. Abraimov, E. Bosque, D. Larbalestier. IEEE Trans. Appl. Supercond., 35, 5 (2025). https://doi.org/10.1109/TASC.2024.3505115
  32. J. Ye, K. Nakamura. Phys. Rev. B, 48, 10 (1993). https://doi.org/10.1103/PhysRevB.48.7554
  33. G. Majkic. In: Superconductivity. From Materials Science to Practical Applications, ed. by Mele (Springer, 2020)
  34. A.E. Shchukin, A.R. Kaul'. Inorg Mater., 58 (2022). https://doi.org/10.1134/S0020168522130015
  35. Z.L. Wang, D.H. Lowndes, D.K. Christen, D.M. Kroeger, C.E. Klabunde, D.P. Norton. Physica C, 252, 1-2 (1995). https://doi.org/10.1016/0921-4534(95)00428-9
  36. Y.V. Cherpak, V.A. Komashko, S.A. Pozigun, A.V. Semenov, C.G. Tretiatchenko, E.A. Pashitski, V.M. Pan. IEEE Trans. Appl. Supercond., 15, 2 (2005). https://doi.org/10.1109/TASC.2005.848212
  37. T.G. Holesinger, S.R. Foltyn, P.N. Arendt, Q. Jia, P.C. Dowden, R.F. DePaula, J.R. Groves. IEEE Trans. Appl. Supercond., 11, 1 (2001). https://doi.org/10.1109/77.919783
  38. M.Z. Khan, E. Rivasto, Y. Wu, Y. Zhao, C. Chen, J. Zhu, H. Palonen, J. Tikkanen, H. Huhtinen, P. Paturi. J. Phys.: Conf. Ser., 1559 (2020). https://doi.org/10.1088/1742-6596/1559/1/012037

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru