The method of crystalline nanostructures formation from amorphous vanadium dioxide films
Komonov A. I.1, Mantsurov N. D.1, Voloshin B. V.1, Seleznev V. A.1, Kichay V. N.2, Yakovkina L. V.2, Mutilin S. V.1
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: komonov@isp.nsc.ru
This work proposes a precise technique for the vanadium dioxide crystalline nanostructures formation from thin solid amorphous vanadium oxide films grown on silicon substrates. High accuracy of the formed nanoscale structures is achieved via using atomic layer deposition and oxidation scanning probe lithography methods. The amorphous nanostructures undergo crystallization following temperature annealing in vacuum. The size of the formed nanocrystals is defined by the thickness of the initial amorphous film and the geometry of the amorphous nanostructures. In this work we obtained single polycrystalline nanostructures and ordered arrays of nanostructures. Lateral dimensions of crystalline nanostructures are less than 100 nm. The single vanadium dioxide nanocrystals are less than 5 nm in height and less than 50 nm in diameter. Keywords: Atomic layer deposition, oxidation scanning probe lithography, post-growth annealing, vanadium dioxide nanostructures, vanadium dioxide nanocrystals.
- M. Coll, J. Fontcuberta, M. Althammer, M. Bibes, H. Boschker, A. Calleja, G. Cheng, M. Cuoco, R. Dittmann, B. Dkhil, I.El Baggari, M. Fanciulli, I. Fina, E. Fortunato, C. Frontera, S. Fujita, V. Garcia, S.T.B. Goennenwein, C.-G. Granqvist, J. Grollier, R. Gross, A. Hagfeldt, G. Herranz, K. Hono, E. Houwman, M. Huijben, A. Kalaboukhov, D.J. Keeble, G. Koster, L.F. Kourkoutis, J. Levy, M. Lira-Cantu, J.L. MacManus-Driscoll, J. Mannhart, R. Martins, S. Menzel, T. Mikolajick, M. Napari, M.D. Nguyen, G. Niklasson, C. Paillard, S. Panigrahi, G. Rijnders, F. Sanchez, P. Sanchis, S. Sanna, D.G. Schlom, U. Schroeder, K.M. Shen, A. Siemon, M. Spreitzer, H. Sukegawa, R. Tamayo, J. van den Brink, N. Pryds, F.M. Granozio. Appl. Surf. Sci., 482, 1 (2019). DOI: 10.1016/j.apsusc.2019.03.312
- P. Hu, P. Hu, T. Vu, M. Li, S. Wang, Y. Ke, X. Zeng, L. Mai, Y. Long. Chem. Rev., 123, 4353 (2023). DOI: 10.1021/acs.chemrev.2c00546
- A. Kumar, A. Kumar, A. Kandasami, V. Singh. J. Supercond. Nov. Magn., 37, 475 (2024). DOI: 10.1007/s10948-024-06705-w
- B. Mun, K. Chen, J. Yoon, C. Dejoie, N. Tamura, M. Kunz, Z. Liu, M.E. Grass, S. Mo, C. Park, Y.Y. Lee, H. Ju. Phys. Rev. B, 84, 113109 (2011). DOI: 10.1103/PhysRevB.84.113109
- A. Goncalves, J. Resende, A.C. Marques, J.V. Pinto, D. Nunes, A. Marie, R. Goncalves, L. Pereira, R. Martins, E. Fortunato. Sol. Energy Master Sol. Cells, 150, 1 (2016). DOI: 10.1016/j.solmat.2016.02.001
- G. Stefanovich, A. Pergament, D. Stefanovich. J. Phys.: Condens. Matter, 12, 8837 (2000). DOI: 10.1088/0953-8984/12/41/310
- C. Wu, X. Zhang, J. Dai, J. Yang, Z. Wu, S. Wei, Y. Xie. J. Mater. Chem., 21, 4509 (2011). DOI: 10.1039/C0JM03078C
- A. Cavalleri, C. Toth, C.W. Siders, J.A. Squier, F. Raksi, P. Forget, J.C. Kieffer. Phys. Rev. Lett., 87, 237401 (2001). DOI: 10.1103/PhysRevLett.87.237401
- J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J.W.L. Yim, D.R. Khanal, D.F. Ogletree, J.C. Grossman, J. Wu. Nat. Nanotechnol., 4, 732 (2009). DOI: 10.1038/nnano.2009.266
- C.L. Tien, C.Y. Chiang, C.C. Wang, S.C. Lin. Materials, 17, 2382 (2024). DOI: 10.3390/ma17102382
- M. Darwish, Y. Zhabura, L. Pohl. Nanomaterials, 14, 582 (2024). DOI: 10.3390/nano14070582
- F. Xu, X. Cao, H. Luo, P. Jin. J. Mater. Chem. C, 6, 1903 (2018). DOI: 10.1039/c7tc05768g
- C.E. Reese, A.V. Mikhonin, M. Kamenjicki, A. Tikhonov, S.A. Asher. J. Am. Chem. Soc., 126, 1493 (2004). DOI: 10.1021/ja037118a
- M. Liu, R. Wei, J. Taplin, W. Zhang. Materials, 16, 7106 (2023). DOI: 10.3390/ma16227106
- R. Yuan, P.J. Tiw, L. Cai, Z. Yang, C. Liu, T. Zhang, C. Ge, Ru. Huang, Y. Yang. Nat. Commun., 14, 3695 (2023). DOI: 10.1038/s41467-023-39430-4
- C. Wen, L. Feng, Z. Li, J. Bai, S. Wang, X. Gao, J. Wang, W. Yao. Front. Mater., 11, 1341518 (2024). DOI: 10.3389/fmats.2024.1341518
- S.A. Corr, D.P. Shoemaker, B.C. Melot, R. Seshadri. Phys. Rev. Lett., 105, 056404 (2010). DOI: 10.1103/PhysRevLett.105.056404
- H. Guo, K. Chen, Y. Oh, K. Wang, C. Dejoie, S.A. Syed Asif, O.L. Warren, Z.W. Shan, J. Wu, A.M. Minor. Nano Lett., 11, 3207 (2011). DOI: 10.1021/nl201460v
- A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.C. Orlianges, A. Catherinot, P. Blondy. Sci. Technol. Adv. Mater., 11, 065002 (2010). DOI: 10.1088/1468-6996/11/6/065002
- F. Glas. Phys. Rev. B, 74, 121302 (2006). DOI: 10.1103/PhysRevB.74.121302
- Y. Zhang, W. Xiong, W. Chen, Y. Zheng. Nanomaterials, 11, P. 338 (2021). DOI: 10.3390/nano11020338
- P. Iqbal, J.A. Preece, P.M. Mendes. Supramolecular Chemistry: From Molecules to Nanomaterials (John Wiley \& Sons, Hoboken, 2012)
- S. Ji, F. Zhang, P. Jin, Sol. Energy Mater Sol. Cells, 95, 3520 (2011). DOI: 10.1016/j.solmat.2011.08.015
- M. Li, X. Wu, L. Li, Y. Wang, D. Li, J. Pan, S. Li, L. Sun, G. Li, J. Mater. Chem. A, 2, 4520 (2014). DOI: 10.1039/C3TA14822J
- W.M. Xiong, J. Shao, Y.Q. Zhang, Y. Chen, X.Y. Zhang, W.J. Chen, Y. Zheng. Phys. Chem. Chem. Phys., 20, 14339 (2018). DOI: 10.1039/C7CP08432C
- L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A.C. Miller, K. Richardson. Mater. Res. Bull., 42, 2107 (2007). DOI: 10.1016/j.materresbull.2007.09.013
- S.V. Mutilin, V.Ya. Prinz, V.A. Seleznev, L.V. Yakovkina. Appl. Phys. Lett., 113, 043101 (2018). DOI: 10.1063/1.5031075
- V.Ya. Prinz, S.V. Mutilin, L.V. Yakovkina, A.K. Gutakovskii, A.I. Komonov. Nanoscale, 12, 3443 (2020). DOI: 10.1039/C9NR08712E
- A. Kumar, S.N. Ghosh, S. Talukder, D. Chopra. ES Mater. Manuf., 23, 974 (2024). DOI: 10.30919/esmm974
- K. Appavoo, D.Y. Lei, Y. Sonnefraud, B. Wang, S.T. Pantelides, S.A. Maier, R.F. Haglund. Nano Lett., 12, 780 (2012). DOI: 10.1021/nl203782y
- E.U. Donev, R. Lopez, L.C. Feldman, R.F. Haglund. Nano Lett., 9, 702 (2009). DOI: 10.1021/nl8031839
- W. Zhang, X. Wu, W. Wang, K. Zhang, B. Li, Y. Chen. ACS Appl. Electron. Mater., 4, 2101 (2022). DOI: 10.1021/acsaelm.2c00257
- A.I. Komonov, N.D. Mantsurov, B.V. Voloshin, V.A. Seleznev, S.V. Mutilin. Appl. Surf. Sci., 658, 159869 (2024). DOI: 10.1016/j.apsusc.2024.159869
- Y.K. Ryu, R. Garcia. Nanotechnology, 28, 142003 (2017). DOI: 10.1088/1361-6528/aa5651
- K.E. Kapoguzov, S.V. Mutilin, N.I. Lysenko, V.N. Kichay, L.V. Yakovkina, B.V. Voloshin, V.A. Seleznev. Physica E, 167, 116165 (2025). DOI: 10.1016/j.physe.2024.116165
- A.I. Komonov, N.D. Mantsurov, B.V. Voloshin, V.A. Seleznev, S.V. Mutilin. in: Young Prof. (Ed.), IEEE 23nd Int. Conf. Electron Devices Mater IEEE, P. 20-24 (2022). DOI: 10.1109/EDM55285.2022.9855164
- N.D. Mantsurov, A.I. Komonov, S.V. Mutilin, V.N. Kichay, L.V. Yakovkina, Proceed. RHEAS, 1, 48 (2024). DOI: 10.17212/1727-2769-2024-1-48-61
- N.D. Mantsurov, A.I. Komonov, B.V. Voloshin. Tez. dokl. 17-i Vseross. Nauch. konf. molodykh uchenykh "Nauka. Tekhnologii. Innovatsii" (Novosibirsk, Rossiya, 2023) (in Russian)
- N.D. Mantsurov, A.I. Komonov, B.V. Voloshin, V.A. Seleznev, S.V. Mutilin. in: Young Prof. (Ed.), IEEE 25nd Int. Conf. Electron Devices Mater IEEE, P. 250-254 (2024). DOI: 10.1109/EDM61683.2024.10615063
- K. Henkel, H. Gargouri, B. Gruska, M. Arens, M. Tallarida, D. Schmeiber. J. Vac. Sci. Technol. A, 32, 01A107 (2014). DOI: 10.1116/1.4831897
- J. Haeberle, K. Henkel, H. Gargouri, F. Naumann, B. Gruska, M. Arens, M. Tallarida, D. Schmeiber. Beilstein J. Nanotechnol., 4, 732 (2013). DOI: 10.3762/bjnano.4.83
- A. Mahmoodinezhad, C. Janowitz, F. Naumann, P. Plate, H. Gargouri, K. Henkel, D. Schmeiber, J.I. Flege. J. Vac. Sci. Technol. A. American Vacuum Society, 38, 022404 (2020). DOI: 10.1116/1.5134800
- T. Blanquart, J. Niinisto, M. Gavagnin, V. Longo, M. Heikkila, E. Puukilainen, V.R. Pallem, C. Dussarrat, M. Ritala, M. Leskela. RSC Adv., 3, 1179 (2013). DOI: 10.1039/C2RA22820C
- G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. Schutter, N. Blasco, J. Kittl, C. Detavernier. Appl. Phys. Lett., 98, 162902 (2011). DOI: 10.1063/1.3579195
- G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse. J. Electron Spectrosc. Relat. Phenom., 135, 167 (2004). DOI: 10.1016/j.elspec.2004.03.004
- D. Necas, P. Klapetek. Cent. Eur. J. Phys., 10, 181 (2012). DOI: 10.2478/s11534-011-0096-2
- P. Schilbe. Phys. B: Condens. Matter, 316-317, 600 (2002). DOI: 10.1016/S0921-4526(02)00584-7
- F. Urena-Begara, A. Crunteanu, J.P. Raskin. Appl. Surf. Sci., 403, 717 (2017). DOI: 10.1016/j.apsusc.2017.01.160
- K.E. Kapoguzov S.V. Mutilin V.Y. Prinz. in: Young Prof. (Ed.), IEEE 22nd Int. Conf. Electron Devices Mater IEEE, P. 58-61 (2021). DOI: 10.1109/EDM52169.2021.9507652
- R.G. Keil, R.E. Salomon. J. Electrochem. Soc., 112, 643 (1965). DOI: 10.1149/1.2423631
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.