The method of crystalline nanostructures formation from amorphous vanadium dioxide films
Komonov A. I.1, Mantsurov N. D.1, Voloshin B. V.1, Seleznev V. A.1, Kichay V. N.2, Yakovkina L. V.2, Mutilin S. V.1
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: komonov@isp.nsc.ru

PDF
This work proposes a precise technique for the vanadium dioxide crystalline nanostructures formation from thin solid amorphous vanadium oxide films grown on silicon substrates. High accuracy of the formed nanoscale structures is achieved via using atomic layer deposition and oxidation scanning probe lithography methods. The amorphous nanostructures undergo crystallization following temperature annealing in vacuum. The size of the formed nanocrystals is defined by the thickness of the initial amorphous film and the geometry of the amorphous nanostructures. In this work we obtained single polycrystalline nanostructures and ordered arrays of nanostructures. Lateral dimensions of crystalline nanostructures are less than 100 nm. The single vanadium dioxide nanocrystals are less than 5 nm in height and less than 50 nm in diameter. Keywords: Atomic layer deposition, oxidation scanning probe lithography, post-growth annealing, vanadium dioxide nanostructures, vanadium dioxide nanocrystals.
  1. M. Coll, J. Fontcuberta, M. Althammer, M. Bibes, H. Boschker, A. Calleja, G. Cheng, M. Cuoco, R. Dittmann, B. Dkhil, I.El Baggari, M. Fanciulli, I. Fina, E. Fortunato, C. Frontera, S. Fujita, V. Garcia, S.T.B. Goennenwein, C.-G. Granqvist, J. Grollier, R. Gross, A. Hagfeldt, G. Herranz, K. Hono, E. Houwman, M. Huijben, A. Kalaboukhov, D.J. Keeble, G. Koster, L.F. Kourkoutis, J. Levy, M. Lira-Cantu, J.L. MacManus-Driscoll, J. Mannhart, R. Martins, S. Menzel, T. Mikolajick, M. Napari, M.D. Nguyen, G. Niklasson, C. Paillard, S. Panigrahi, G. Rijnders, F. Sanchez, P. Sanchis, S. Sanna, D.G. Schlom, U. Schroeder, K.M. Shen, A. Siemon, M. Spreitzer, H. Sukegawa, R. Tamayo, J. van den Brink, N. Pryds, F.M. Granozio. Appl. Surf. Sci., 482, 1 (2019). DOI: 10.1016/j.apsusc.2019.03.312
  2. P. Hu, P. Hu, T. Vu, M. Li, S. Wang, Y. Ke, X. Zeng, L. Mai, Y. Long. Chem. Rev., 123, 4353 (2023). DOI: 10.1021/acs.chemrev.2c00546
  3. A. Kumar, A. Kumar, A. Kandasami, V. Singh. J. Supercond. Nov. Magn., 37, 475 (2024). DOI: 10.1007/s10948-024-06705-w
  4. B. Mun, K. Chen, J. Yoon, C. Dejoie, N. Tamura, M. Kunz, Z. Liu, M.E. Grass, S. Mo, C. Park, Y.Y. Lee, H. Ju. Phys. Rev. B, 84, 113109 (2011). DOI: 10.1103/PhysRevB.84.113109
  5. A. Goncalves, J. Resende, A.C. Marques, J.V. Pinto, D. Nunes, A. Marie, R. Goncalves, L. Pereira, R. Martins, E. Fortunato. Sol. Energy Master Sol. Cells, 150, 1 (2016). DOI: 10.1016/j.solmat.2016.02.001
  6. G. Stefanovich, A. Pergament, D. Stefanovich. J. Phys.: Condens. Matter, 12, 8837 (2000). DOI: 10.1088/0953-8984/12/41/310
  7. C. Wu, X. Zhang, J. Dai, J. Yang, Z. Wu, S. Wei, Y. Xie. J. Mater. Chem., 21, 4509 (2011). DOI: 10.1039/C0JM03078C
  8. A. Cavalleri, C. Toth, C.W. Siders, J.A. Squier, F. Raksi, P. Forget, J.C. Kieffer. Phys. Rev. Lett., 87, 237401 (2001). DOI: 10.1103/PhysRevLett.87.237401
  9. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J.W.L. Yim, D.R. Khanal, D.F. Ogletree, J.C. Grossman, J. Wu. Nat. Nanotechnol., 4, 732 (2009). DOI: 10.1038/nnano.2009.266
  10. C.L. Tien, C.Y. Chiang, C.C. Wang, S.C. Lin. Materials, 17, 2382 (2024). DOI: 10.3390/ma17102382
  11. M. Darwish, Y. Zhabura, L. Pohl. Nanomaterials, 14, 582 (2024). DOI: 10.3390/nano14070582
  12. F. Xu, X. Cao, H. Luo, P. Jin. J. Mater. Chem. C, 6, 1903 (2018). DOI: 10.1039/c7tc05768g
  13. C.E. Reese, A.V. Mikhonin, M. Kamenjicki, A. Tikhonov, S.A. Asher. J. Am. Chem. Soc., 126, 1493 (2004). DOI: 10.1021/ja037118a
  14. M. Liu, R. Wei, J. Taplin, W. Zhang. Materials, 16, 7106 (2023). DOI: 10.3390/ma16227106
  15. R. Yuan, P.J. Tiw, L. Cai, Z. Yang, C. Liu, T. Zhang, C. Ge, Ru. Huang, Y. Yang. Nat. Commun., 14, 3695 (2023). DOI: 10.1038/s41467-023-39430-4
  16. C. Wen, L. Feng, Z. Li, J. Bai, S. Wang, X. Gao, J. Wang, W. Yao. Front. Mater., 11, 1341518 (2024). DOI: 10.3389/fmats.2024.1341518
  17. S.A. Corr, D.P. Shoemaker, B.C. Melot, R. Seshadri. Phys. Rev. Lett., 105, 056404 (2010). DOI: 10.1103/PhysRevLett.105.056404
  18. H. Guo, K. Chen, Y. Oh, K. Wang, C. Dejoie, S.A. Syed Asif, O.L. Warren, Z.W. Shan, J. Wu, A.M. Minor. Nano Lett., 11, 3207 (2011). DOI: 10.1021/nl201460v
  19. A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.C. Orlianges, A. Catherinot, P. Blondy. Sci. Technol. Adv. Mater., 11, 065002 (2010). DOI: 10.1088/1468-6996/11/6/065002
  20. F. Glas. Phys. Rev. B, 74, 121302 (2006). DOI: 10.1103/PhysRevB.74.121302
  21. Y. Zhang, W. Xiong, W. Chen, Y. Zheng. Nanomaterials, 11, P. 338 (2021). DOI: 10.3390/nano11020338
  22. P. Iqbal, J.A. Preece, P.M. Mendes. Supramolecular Chemistry: From Molecules to Nanomaterials (John Wiley \& Sons, Hoboken, 2012)
  23. S. Ji, F. Zhang, P. Jin, Sol. Energy Mater Sol. Cells, 95, 3520 (2011). DOI: 10.1016/j.solmat.2011.08.015
  24. M. Li, X. Wu, L. Li, Y. Wang, D. Li, J. Pan, S. Li, L. Sun, G. Li, J. Mater. Chem. A, 2, 4520 (2014). DOI: 10.1039/C3TA14822J
  25. W.M. Xiong, J. Shao, Y.Q. Zhang, Y. Chen, X.Y. Zhang, W.J. Chen, Y. Zheng. Phys. Chem. Chem. Phys., 20, 14339 (2018). DOI: 10.1039/C7CP08432C
  26. L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A.C. Miller, K. Richardson. Mater. Res. Bull., 42, 2107 (2007). DOI: 10.1016/j.materresbull.2007.09.013
  27. S.V. Mutilin, V.Ya. Prinz, V.A. Seleznev, L.V. Yakovkina. Appl. Phys. Lett., 113, 043101 (2018). DOI: 10.1063/1.5031075
  28. V.Ya. Prinz, S.V. Mutilin, L.V. Yakovkina, A.K. Gutakovskii, A.I. Komonov. Nanoscale, 12, 3443 (2020). DOI: 10.1039/C9NR08712E
  29. A. Kumar, S.N. Ghosh, S. Talukder, D. Chopra. ES Mater. Manuf., 23, 974 (2024). DOI: 10.30919/esmm974
  30. K. Appavoo, D.Y. Lei, Y. Sonnefraud, B. Wang, S.T. Pantelides, S.A. Maier, R.F. Haglund. Nano Lett., 12, 780 (2012). DOI: 10.1021/nl203782y
  31. E.U. Donev, R. Lopez, L.C. Feldman, R.F. Haglund. Nano Lett., 9, 702 (2009). DOI: 10.1021/nl8031839
  32. W. Zhang, X. Wu, W. Wang, K. Zhang, B. Li, Y. Chen. ACS Appl. Electron. Mater., 4, 2101 (2022). DOI: 10.1021/acsaelm.2c00257
  33. A.I. Komonov, N.D. Mantsurov, B.V. Voloshin, V.A. Seleznev, S.V. Mutilin. Appl. Surf. Sci., 658, 159869 (2024). DOI: 10.1016/j.apsusc.2024.159869
  34. Y.K. Ryu, R. Garcia. Nanotechnology, 28, 142003 (2017). DOI: 10.1088/1361-6528/aa5651
  35. K.E. Kapoguzov, S.V. Mutilin, N.I. Lysenko, V.N. Kichay, L.V. Yakovkina, B.V. Voloshin, V.A. Seleznev. Physica E, 167, 116165 (2025). DOI: 10.1016/j.physe.2024.116165
  36. A.I. Komonov, N.D. Mantsurov, B.V. Voloshin, V.A. Seleznev, S.V. Mutilin. in: Young Prof. (Ed.), IEEE 23nd Int. Conf. Electron Devices Mater IEEE, P. 20-24 (2022). DOI: 10.1109/EDM55285.2022.9855164
  37. N.D. Mantsurov, A.I. Komonov, S.V. Mutilin, V.N. Kichay, L.V. Yakovkina, Proceed. RHEAS, 1, 48 (2024). DOI: 10.17212/1727-2769-2024-1-48-61
  38. N.D. Mantsurov, A.I. Komonov, B.V. Voloshin. Tez. dokl. 17-i Vseross. Nauch. konf. molodykh uchenykh "Nauka. Tekhnologii. Innovatsii" (Novosibirsk, Rossiya, 2023) (in Russian)
  39. N.D. Mantsurov, A.I. Komonov, B.V. Voloshin, V.A. Seleznev, S.V. Mutilin. in: Young Prof. (Ed.), IEEE 25nd Int. Conf. Electron Devices Mater IEEE, P. 250-254 (2024). DOI: 10.1109/EDM61683.2024.10615063
  40. K. Henkel, H. Gargouri, B. Gruska, M. Arens, M. Tallarida, D. Schmeiber. J. Vac. Sci. Technol. A, 32, 01A107 (2014). DOI: 10.1116/1.4831897
  41. J. Haeberle, K. Henkel, H. Gargouri, F. Naumann, B. Gruska, M. Arens, M. Tallarida, D. Schmeiber. Beilstein J. Nanotechnol., 4, 732 (2013). DOI: 10.3762/bjnano.4.83
  42. A. Mahmoodinezhad, C. Janowitz, F. Naumann, P. Plate, H. Gargouri, K. Henkel, D. Schmeiber, J.I. Flege. J. Vac. Sci. Technol. A. American Vacuum Society, 38, 022404 (2020). DOI: 10.1116/1.5134800
  43. T. Blanquart, J. Niinisto, M. Gavagnin, V. Longo, M. Heikkila, E. Puukilainen, V.R. Pallem, C. Dussarrat, M. Ritala, M. Leskela. RSC Adv., 3, 1179 (2013). DOI: 10.1039/C2RA22820C
  44. G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. Schutter, N. Blasco, J. Kittl, C. Detavernier. Appl. Phys. Lett., 98, 162902 (2011). DOI: 10.1063/1.3579195
  45. G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse. J. Electron Spectrosc. Relat. Phenom., 135, 167 (2004). DOI: 10.1016/j.elspec.2004.03.004
  46. D. Necas, P. Klapetek. Cent. Eur. J. Phys., 10, 181 (2012). DOI: 10.2478/s11534-011-0096-2
  47. P. Schilbe. Phys. B: Condens. Matter, 316-317, 600 (2002). DOI: 10.1016/S0921-4526(02)00584-7
  48. F. Urena-Begara, A. Crunteanu, J.P. Raskin. Appl. Surf. Sci., 403, 717 (2017). DOI: 10.1016/j.apsusc.2017.01.160
  49. K.E. Kapoguzov S.V. Mutilin V.Y. Prinz. in: Young Prof. (Ed.), IEEE 22nd Int. Conf. Electron Devices Mater IEEE, P. 58-61 (2021). DOI: 10.1109/EDM52169.2021.9507652
  50. R.G. Keil, R.E. Salomon. J. Electrochem. Soc., 112, 643 (1965). DOI: 10.1149/1.2423631

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru