Nonadiabatic superconductivity in fullerene-based materials
Grimaldi C.1, Cappelluti E.2, Pietronero L.2, Strassler S.1
1Departement de Microtechnique --- IPM, Ecole Polytecnique Federale Lausanne, Lausanne, Switzerland
2Department of Physics, University "La Sapienza" and INFM, Rome 1, Italy
Выставление онлайн: 17 февраля 2002 г.
Fullerene compounds have phonon frequencies up to omegamax=0.2 eV and Fermi energy of order EF=0.3 eV. It is therefore expected that the adiabatic parameter lambdaomegaph/EF, where lambda is the electron-phonon coupling constant and omegaph is a typical phonon frequency, is not negligible a priori and that the conventional phonon-mediated theory of superconductivity does not longer apply. Here we discuss how the conventional theory is inconsistent with a number of experimental data and provide a generalization of the theory in order to include nonadiabatic electron-phonon effects. We show that the inclusion of nonadiabatic channels in the electron-phonon interaction is a key element for the high values of Tc in these materials. We provide several predictions on superconducting and normal state properties of fullerene compounds susceptible to be tested experimentally.
- A.B. Migdal. Sov. Phys. JETP 7, 996 (1958)
- G.M. Eliashberg. Sov. Phys. JETP 11, 696 (1960)
- O. Gunnarsson. Rev. Mod. Phys. 69, 575 (1997)
- Y.J. Uemura et al. Nature (London) 352, 605 (1991)
- S.K. Watson et al. Phys. Rev. B55, 3866 (1997)
- J.H. Schon, Ch. Kloc, B. Batlogg. Nature (London) 408, 549 (2000)
- J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu. Nature (London) 410, 63 (2001)
- M. Schluter et al. Phys. Rev. Lett. 68, 526 (1992); M. Schluter et al. J. Phys. Chem. Solid 53, 1473 (1992); J.C.R. Faulhaber et al. Phys. Rev. B48, 661 (1993); C.M. Varma et al. Science 254, 989 (1991); V.P. Antropov et al. Phys. Rev. B48, 7651 (1993); N. Breda et al. Chem. Phys. Lett. 286, 350 (1998)
- M.S. Fuhrer, K. Cherrey, A. Zettl, M.L. Cohen, V.H. Crespi. Phys. Rev. Lett. 83, 404 (1999)
- J.P. Carbotte. Rev. Mod. Phys. 62, 1027 (1990)
- E. Cappelluti, C. Grimaldi, L. Pietronero, S. Strassler. Phys. Rev. Lett. 85, 4771 (2000)
- C. Grimadli, L. Pietronero, S. Strassler. Phys. Rev. Lett. 75, 1158 (1995)
- L. Pietronero, S. Strassler, C. Grimaldi. Phys. Rev. B52, 10 516 (1995); ibid. 52, 10 530 (1995)
- M.L. Kulic. Phys. Rep. 338, 1 (2000) and references therein
- P.J. Benning et al. Science 252, 1417 (1991)
- C. Grimaldi, E. Cappelluti, L. Pietronero. Europhys. Lett. 42,667 (1998)
- D. Fay. J. Appel. Phys. Rev. B20, 3705 (1979); ibid 22, 1461 (1980)
- E. Cappelluti, C. Grimaldi, L. Pietronero. Phys. Rev. B (to be published)
- M. Scattoni, C. Grimaldi, L. Pietronero. Europhys. Lett. 47, 588 (1999)
- J.M. An, W.E. Pickett. Phys. Rev. Lett. 86, 4366 (2001)
- A. Perali, C. Grimaldi, L. Pietronero. Phys. Rev. B58, 5736 (1998).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.