Complete characterisation of a (Sb2O3)n/SWNT inclusion composite
Friedrichs S.1, Meyer R.R.2, Sloan J.1, Kirkland A.I.2, Hutchison J.L.3, Green M.L.H.1
1Wolfson Catalysis Centre (Carbon Nanotechnology Group), Inorganic Chemistry Laboratory, Oxford OX1 3QR, U.K.
2Department of Materials Science, Cambridge CB2 3QZ, U.K.
3Department of Materials, Oxford OX1 3PH, U.K.
Выставление онлайн: 17 февраля 2002 г.
The detailed inclusion crystallography of a 1-dimensional valentinite Sb2O3 crystal incorporated within a helical (21,-8) single walled carbon nanotube has been identified from a phase image that was recovered via a modified object wave restoration scheme. A detailed analysis of asymmetric fringe contrast in the tube walls has provided strong evidence for the chiral sence of the tube itself. Due to the good agreement of observed wall periodicity with the determined absolute focus values and power spectra obtained from single-pixel line traces along both tube walls, we were able to determine the chiral sence of the SWNT and the tilt angle of the Sb2O3/SWNT composite relative to the electron beam. The angle between the optimum < 1 0 -1> viewing direction of the crystal fraction and the tube axis, which is aligned with the < 4 -1 2> direction of the Sb2O3 crystal, is 78.3o. Since small deviations from this viewing direction make an insignficant difference to the observed contrast, a tube inclination of 15o is plausible for both the Sb2O3 crystal and the assigned (21,-8) SWNT, which is the mirror image of a (13,8) SWNT. We acknowledge the Petroleum Research Fund, administered by the American Chemical Society (Grant N 33765-AC5), the EPSRC (Grant Nos GR/L59238 and GR/L22324) and Colebrand Ltd. for financial support. S.F. is indebted to BMBF and Fonds der Chemischen Industrie for additional financial support. J.S. is indebted to the Royal Society.
- S. Friedrichs, R.R. Meyer, J. Sloan, A.I. Kirkland, J.L. Hutchinson, M.L.H. Green. Phys. Rev. B, in print
- C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. Delachapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fisher. Nature (Lond.) 388, 756 (1997)
- J. Sloan, D.M. Wright, H.-G. Woo, S. Bailey, G. Brown, A.P.E. York, K.S. Coleman, J.L. Hutchison, M.L.H. Green. Chem. Commun. 699 (1999)
- J.M. Cowley, A.F. Moodie. Acta. Cryst. 10, 609 (1957)
- P. Goodman, A.F. Moodie. Acta. Cryst. A30, 280 (1974)
- E.J. Kirkland. In: Advanced Computing in Electron Microscopy. Plenum Press. N. Y. (1998)
- The lower limit for m used here differs from the definition given in Ref. [8], to ensure that the chiral angle alpha lies in the range -30<alpha=<q 30o
- R. Saito, C. Dresselhaus, M.S. Dresselhaus. Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)
- C. Svensson. Acta Cryst. B30, 458 (1974)
- C. Svensson. Acta Cryst. B31, 2016 (1975)
- R.R. Meyer, J. Sloan, R.E. Dunin-Borowski, A.I. Kirkland, M.C. Novotny, S.R. Bailey, J.L. Hutchison, M.L.H. Green. Science 289, 1324 (2000)
- If the K and I atoms are superposed in projection as in the case of a crystal viewed along < 100>, for example, then the resulting image contrast from both columns is summed in projection as we reported for a 2x 2 KI crystal formed inside a SWNT. [J. Sloan et al. Chem. Phys. Lett. 329, 61 (2000).]
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.