Ivanov M.A.1, Koz ovski M.2, Piesiewicz T.2, Stephanovich V.A.3, Weron A.4, Wymys owski A.5
1Institute of Metal Physics, Ukranian National Academy of Sciences, Kiev, Ukraine
2Institute of Power Systems Automation & Laboratory for Interconnecting and Packaging Electronic Circuits, Wroc aw University of Technology, Wroc aw, Poland
3Opole University, Institute of Mathematics and Informatics, Opole, Poland
4Hugo Steinhaus Center for Stochastic Methods, Wroc aw University of Technology, Wroc aw, Poland
5Laboratory for Interconnecting and Packaging Electronic Circuits, Wroc aw University of Technology, Wroc aw, Poland
Email: ivanov@imp.kiev.ua
Поступила в редакцию: 4 ноября 2004 г.
Выставление онлайн: 19 сентября 2005 г.
We show that a microscopic reason for a steep dropping of the optical phonon branch into the acoustic one (the so-called waterfall effect) in relaxor ferroelectrics may be the coupling of phonons with the defects and impurities of different kinds, which is always present in relaxors. Namely, we do not specify the type of impurities but rather represent them as an ensemble of so-called two-level systems (TLS). This approach permits to trace the evolution of the "waterfall" with temperature and the TLS concentration. To facilitate the planning of experiments on inelastic neutron scattering, we present a modification of the so-called Latin Hypercube Sampling method, which, based on some significance criteria, permits, to perform the measurements which are the most signeficant to elucidate the physical nature of, e. g., phonon dispersion laws in relaxor ferroelectrics. Partial financial support was given to this work by the European Community 5th Framework Programme (MEVIPRO Project).
- V.G. Vaks. Introduction in microscopic theory of ferroelectrics. Nauka, Moscow (1973). (in Russian)
- R. Blinc, B. Zeks. Soft modes in ferroelectrics and antiferroelectrics. Elsevier, N.Y. (1974)
- S.B. Vakhrushev, S.M. Shapiro. Phys. Rev. B 66, 214 101 (2002)
- P.M. Gehring, S.E. Park, G. Shirane. Phys. Rev. Lett. 84, 5216 (2000)
- M.D. Glinchuk, V.A. Stephanovich, E.A. Eliseev, E.V. Kirichenko, L. Jastrabik. Appl. Phys. Lett. 80, 646 (2002)
- D. Viehland, J.F. Li, S.J. Jang, L.E. Cross. Phys. Rev. B 43, 8316 (1999)
- E.V. Colla, E.Yu. Koroleva, N.M. Okuneva, S.B. Vakhrushev. J. Phys.: Cond. Mat. 4, 3671 (1992)
- P.M. Gehring, S. Wakimoto, Z.-G. Ye, G. Shirane. Phys. Rev. Lett. 87, 277 601 (2001); D. La-Orauttapong, B. Noheda, Z.-G. Ye, P.M. Gehring, J. Toulouse, D.E. Cox, G. Shirane. Phys. Rev. B 65, 144 101 (2002); S. Wakimoto, C. Stock, Z.-G. Ye, W. Chen, P.M. Gehring, G. Shirane. Phys. Rev. B 66, 224 102 (2002)
- P.M. Gehring, S.E. Park, G. Shirane. Phys. Rev. B 63, 224 109 (2001)
- J. Harada, J.D. Axe, G. Shirane. Phys. Rev. B 4, 155 (1971)
- J. Hlinka, S. Kamba, J. Petzelt, J. Kulda, C.A. Randall, S.J. Zhang. Phys. Rev. Lett. 91, 107 602 (2003); J. Hlinka, S. Kamba, J. Petzelt, J. Kulda, C.A. Randall, S.J. Zhang. J. Phys.: Cond. Mat. 15, 4249 (2003)
- B.E. Vugmeister, M.D. Glinchuk. Rev. Mod. Phys. 62, 993 (1990)
- M.D. Glinchuk, V.A. Stephanovich. J. Phys.: Cond. Mat. 6, 6317 (1994)
- M.D. Glinchuk, V.A. Stephanovich. J. Phys.: Cond. Mat. 10, 11081 (1998)
- M.D. Glinchuk, V.A. Stephanovich. J. Appl. Phys. 85, 1722 (1999)
- M.D. Glinchuk, R. Farhi. J. Phys.: Cond. Mat. 8, 6985 (1996)
- M.D. McKay, R.J. Bechman, W.J. Conover. Technometrics 21, 239 (1979)
- Ch. Kittel Quantum theory of Solids. Wiley, N.Y. (1973)
- P.W. Anderson, B.I. Halperin, C.M. Varma. Phil. Mag. 25, 1 (1972)
- R.L. Iman, W.J. Conover. Communication Statistics --- Theory and Methods A 9, 1749 (1980)
- J. Sachs, S.B. Schiller, W.J. Welch. Technometrics 31, 41 (1989)
- B. Tang. J. Amer. Stat. Assoc. 88, 1392 (1993)
- J.S. Park. J. Statistical Planning and Interferences 90, 145 (1994)
- K.Q. Ye, W. Li, A. Sudianto. J. Statistical Planning and Interferences 90, 145 (2000)
- Noel A.C. Cressie. Statistics for Spatial Data. J. Wiley, N. Y. (1993)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.