Universal ratio of Coulomb interaction to geometric quantization in (In, Ga)As/GaAs quantum dots
Bayer M.1, Ludwig A.2, Wieck A.2
1Experimentelle Physik 2, Technische Universität Dortmund, Dortmund, Germany
2Angewandte Festkorperphysik, Ruhr-Universitat Bochum, Universitatsstrab e 150, Bochum, Germany
Email: manfred.bayer@tu-dortmund.de
Выставление онлайн: 20 июля 2018 г.
We study the photoluminescence of self-assembled (In, Ga)As/GaAs quantum dot ensembles with varying confinement potential height. The low energy shift of the s-shell emission with increasing excitation power gives a measure of the Coulomb interaction in these structures as it results from carrier-carrier interactions between the optically injected exciton complexes. When dividing this shift by the dot level splitting, determined by the geometric confinement, we obtain a universal function of the number of involved excitons that is independent of the confinement potential height. This shows an identical scaling of Coulomb interaction and geometric quantization with varying confinement. We gratefully acknowledge the support of this work by the Deutsche Forschungsgemeinschaft in the frame of TRR 160 (projects A1 and Z1). MB also acknowledges support by the RF Government Grant N 14.Z50.31.0021.
- C. Weisbuch, B. Vinter. Quantum Semiconductor Structures: Fundamentals and Applications, Academic Press (1991)
- M. Grundmann. The Physics of Semiconductors, Springer (2010)
- Y. Arakawa, H. Sakaki. Appl. Phys. Lett. 40, 939 (1982)
- T. Ogawa, T. Takagahara. Phys. Rev. B 44, 8138 (1991)
- see, for example, S. Glutsch. Excitons in Low-Dimensional Semiconductors. Springer (2004)
- L. Jacak, P. Hawrylak, A. Wojs. Quantum Dots, Springer (1998); T. Chakraborty. Quantum Dots, Elsevier (1999); D. Bimberg, M. Grundmann, N. Ledentsov. Quantum dot heterostructures, John Wiley (1999)
- see, for example, Nanocrystal Quantum Dots / ed. by V. Klimov, Taylor \& Francis (2010)
- see, for example, S. Raymond, S. Studenikin, A. Sachrajda, Z. Wasilewski, S.J. Cheng, W. Sheng, P. Hawrylak, A. Babinski, M. Potemski, G. Ortner, M. Bayer. Phys. Rev. Lett. 92, 187402 (2004), and references therein
- W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, A.D. Wieck. Phys. Rev. B 69, 161301 (2004)
- H. Kurtze, J. Seebeck, P. Gartner, D.R. Yakovlev, D. Reuter, A.D. Wieck, M. Bayer, F. Jahnke. Phys. Rev. B 80, 235319 (2009); A. Steinhoff, H. Kurtze, P. Gartner, M. Florian, D. Reuter, A.D. Wieck, M. Bayer, F. Jahnke. Phys. Rev. B 88, 205309 (2013)
- V. Fock. Zeitschrift fur Physik 47, 446 (1928); C.G. Darwin. Proc. Cambridge Philos. Soc. 27, 86 (1930)
- see, for example, C. Klingshirn. Semiconductor Optics, Springer (2012)
- M. Bayer, S.N. Walck, T.L. Reinecke, A. Forchel. Phys. Rev. B 57, 6584 (1998)
- P. Roussignol, M. Kull, D. Ricard, F. de Rougemont, R. Frey, C. Flytzanis. Appl. Phys. Lett. 51, 1882 (1987); V.A. Kharchenko, M. Rosen. J. Lumin. 70, 158 (1996); M. Achermann, A.P. Bartko, J.A. Hollingsworth, V.I. Klimov. Nature Phys. 2, 557 (2006)
- see, for example, R. Vaxenburg, A. Rodina, A. Shabaev, E. Lifshitz, A.L. Efros. Nano Lett. 15, 2092 (2015), and references therein
- P. Hawrylak. Phys. Rev. B 60, 5597 (1999)
- Single Quantum Dots / ed. P. Michler. Springer (2003)
- A. Kuther, M. Bayer, A. Forchel, A. Gorbunov, V.B. Timofeev, F. Schafer, J.P. Reithmaier. Phys. Rev. B 58, 7508 (1998)
- H. Haug, S.W. Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors, World Scientific (2009)
- see, for example, R. Zimmermann, K. Kilimann, W.D. Kraeft, D. Kremp, G. Ropke. Phys. Status Solidi B 90, 175 (1978)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.