Линейный коэффициент теплового расширения и температура Дебая PbTe при высоких температурах
Шаров М.К.1
1Воронежский государственный университет, Воронеж, Россия
Email: sharov-mk@mail.ru
Поступила в редакцию: 1 апреля 2022 г.
В окончательной редакции: 6 апреля 2022 г.
Принята к печати: 11 апреля 2022 г.
Выставление онлайн: 29 апреля 2022 г.
С помощью рентгеновской дифрактометрии исследован линейный коэффициент теплового расширения и температура Дебая PbTe в области высоких температур. Исследования проведены на образцах двух типов: монокристалле и порошке PbTe, синтезированных отдельно. Оба типа образцов показали довольно близкие результаты во всех измерениях. Установлено, что в температурном интервале 293-773 K линейный коэффициент теплового расширения PbTe не зависит от температуры, и равен для порошка: α=20.1· 10-6± 0.9· 10-6 K-1, а для монокристалла: α=19.7· 10-6± 0.8· 10-6 K-1. Температура Дебая, измеренная в температурном интервале 293-573 K, оказалась равной 105±3 K. Ключевые слова: теллурид свинца, линейный коэффициент теплового расширения, температура Дебая.
- С.И. Новикова, Н.Х. Абрикосов. ФТТ 5, 1913 (1963)
- B. Houston, R.E. Strakna, H.S. Belson. J. Appl. Phys. 39, 3913 (1968)
- J.M. Skelton, S.C. Parker, A. Togo, I. Tanaka, A. Walsh. Phys. Phys. Rev. B 89, 205203 (2014)
- S. Kastbjerg, N. Bindzus, M. S ndergaard, S. Johnsen, N. Lock, M. Christensen, B.B. Iversen. Adv. Funct. Mater. 23, 5477 (2013)
- J.P. Male, R. Hanus, G.J. Snyder, R.P. Hermann. Chem. Mater. 33, 4765 (2021)
- K.S. Knight. Can. Mineral. 54, 1493 (2016)
- R. Minikayev, F. Safari, A. Katrusiak, W. Szuszkiewicz, A. Szczerbakow, A. Bell, E. Dynowska, W. Paszkowicz. Crystals 11, 1063 (2021)
- J.D. Querales-Flores, J. Cao, S. Fahy, I. Savic. Phys. Rev. Mater. 3, 055405 (2019)
- D.H. Parkinson, I.E. Quarrington. Proc. Phys. Soc. 67, 569 (1954)
- J. Callaway. Phys. Rev. 113, 1046 (1959)
- W. Cochran, R.A. Cowley, G. Dolling, M.M. Elcombe. Proc. Roy. Soc. A293, 433 (1966)
- G. Gilat, G. Dolling. Phys. Lett. 8, 304 (1964)
- X. Yang, Z. Wang, J. Carrete. J. Appl. Phys. 118, 085701 (2015)
- L. Bjerg, B.B. Iversen, G.K. Madsen. Phys. Rev. B 89, 024304 (2014)
- R. Karunamoorthi, P.I. Devi, K. Ramachandran. Adv. Mater. Res. 678, 17 (2013)
- C.W. Li, J. Ma, H.B. Cao, A.F. May, D.L. Abernathy, G. Ehlers, C. Hoffmann, X. Wang, T. Hong, A. Huq, O. Gourdon, O. Delaire. Phys. Rev. B 90, 214303 (2014)
- P.B. Pereira, I. Sergueev, S. Gorsse, J. Dadda, E. Muller, R.P. Hermann. Phys. Status Solidi 250, 1300 (2013)
- H. Wang, Y. Pei, A.D. LaLonde, G.J. Snyder. Adv. Mater. 23, 1366 (2011)
- Y. Pei, A.D. LaLonde, N.A. Heinz, G.J. Snyder. Adv. Energy Mater. 2, 670 (2012)
- M.K. Jacobsen, W. Liu, B. Li. J. Phys. Condens. Matter 25, 365402 (2013)
- F. Kong, Y. Liu, B. Wang, Y. Wang, L. Wang. Comp. Mater. Sci. 56, 18-24. (2012)
- D.T. Morelli. G.A. Slack. High lattice thermal conductivity solids. In High Thermal Conductivity Materials. Springer, N. Y. (2006). P. 37-68
- С.С. Горелик, Л.Н. Расторгуев, Ю.А. Скаков. Рентгенографический и электронно-оптический анализ. МИСИС, М. (1994). 328 с
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.